
Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Attacker Control and Bug Prioritization
(Work in progress)

Guilhem Lacombe 1,2

Supervised by Sébastien Bardin 1,2

1CEA LIST (LSL) 2Université Paris-Saclay

GT MFS Annual Meeting
Oléron 05/04/24

1/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Introduction

Defining Attacker Control

Algorithms

Implementation and Experiments

Conclusion

2/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

We find too many bugs!
Bugs are found faster than they can be fixed!

A concrete example: Syzbot1

▶ 24/7 fuzzing (mainly Linux)

▶ >4k since 2017

▶ ∼1k still open ↗

1https://syzkaller.appspot.com/upstream

fuzzing
symbolic
execution

abstract
interpretation

klee

binsec

angr

syzkaller

afl++

frama-c

infer

▶ developers cannot fix them all

▶ but not all of them are equally
dangerous

3/35

https://syzkaller.appspot.com/upstream

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Motivating example

Vulnerability a

size < 40

1 char buf[256];
2
3 if(size > 296)
4 size = 296;
5 if(size < 40) // should be size > 40
6 size -= 40;
7 memcpy(buf, msg, size);

write size ∈ [264 − 40; 264 − 1]
⇒ crash
⇒ maybe not that dangerous

Vulnerability b

size > 256

1 char buf[256];
2
3 if(size > 296)
4 size = 296;
5 if(size < 40) // should be size > 40
6 size −= 40;
7 memcpy(buf, msg, size);

write size ∈ [257; 296]
⇒ return address overwritten
⇒ DANGER!!!

4/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

We need efficient bug prioritization

Fuzzing & CO

crashing inputs

Evaluation

ranked vulnerabilities

TO FIX

OOB +++ ...

UAF ++

OOB ++

OOB +

5/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Existing approaches are lackluster

Approach Pros Cons

vulnerability type + easy - imprecise (a and b
⇒ threat level + scalable are both OOB writes)

Automated Exploit + strong indicator - lack of genericity
Generation1 (on success) - false negatives

AI2 + scalable - lack of transparency
- focus on user reports

Robust Reachability3 + reliability - not the full picture
indicator

⇒ lack of formal methods research on this subject

1Avgerinos et al., NDSS 2011
2Le et al., ACM Computing Surveys 2022
3Girol et al., CAV 2021

6/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Goals and Challenges

Goals
▶ precise bug prioritization based on formal methods

▶ good-enough scalability

▶ fully automated

Challenges

▶ what is exploitability? non-exploitability?

▶ precision vs. genericity

▶ poor scalability of precise analysis techniques

7/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Goals and Challenges

Goals
▶ precise bug prioritization based on formal methods

▶ good-enough scalability

▶ fully automated

Challenges

▶ what is exploitability? non-exploitability?

▶ precision vs. genericity

▶ poor scalability of precise analysis techniques

7/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Main proposition

Evaluate vulnerabilities based on Attacker Control
▶ the ability of attackers to obtain desired effects

▶ without assuming their goals

8/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Our contributions

Exploration of formal definitions for control + algorithms

▶ [new] weak / strong control

▶ existing notions of quantitative information flow
→ quantitative control

▶ [new] domains of control

+ why taint analysis is not enough

Shrink and Split algorithm

measuring domains of control based on qualitative notions

▶ more scalable than counting

▶ more nuanced results

+ promising experiments on real-world vulnerabilities

9/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Our contributions

Exploration of formal definitions for control + algorithms

▶ [new] weak / strong control

▶ existing notions of quantitative information flow
→ quantitative control

▶ [new] domains of control

+ why taint analysis is not enough

Shrink and Split algorithm

measuring domains of control based on qualitative notions

▶ more scalable than counting

▶ more nuanced results

+ promising experiments on real-world vulnerabilities

9/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Introduction

Defining Attacker Control

Algorithms

Implementation and Experiments

Conclusion

10/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Intuitive definition

- location l
- variable vinput concrete execution

example: v ∼ buffer overflow size
What does attacker control over v mean?

Intuition
control = ability to obtain desired values

more obtainable values
⇒? more control
⇒? higher exploitability

11/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Intuitive definition

- location l
- variable vinput concrete execution

example: v ∼ buffer overflow size
What does attacker control over v mean?

Intuition
control = ability to obtain desired values

more obtainable values
⇒? more control
⇒? higher exploitability

11/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Straightforward solutions

Qualitative [new definitions]

Weak Control (WC): at least 2 obtainable values
Strong Control (SC): all values are obtainable

Quantitative [more standard]

Quantitative Control (QC): ∼ channel capacity

QC (v , l) =
ln # of obtainable values

ln max # of values

Motivating Example

▶ Vuln. a: WC , ¬SC , QC ≈ 0.08

▶ Vuln. b: WC , ¬SC , QC ≈ 0.08

We need something less one-dimensional.

12/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Straightforward solutions

Qualitative [new definitions]

Weak Control (WC): at least 2 obtainable values
Strong Control (SC): all values are obtainable

Quantitative [more standard]

Quantitative Control (QC): ∼ channel capacity

QC (v , l) =
ln # of obtainable values

ln max # of values

Motivating Example

▶ Vuln. a: WC , ¬SC , QC ≈ 0.08

▶ Vuln. b: WC , ¬SC , QC ≈ 0.08

We need something less one-dimensional.

12/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Straightforward solutions

Qualitative [new definitions]

Weak Control (WC): at least 2 obtainable values
Strong Control (SC): all values are obtainable

Quantitative [more standard]

Quantitative Control (QC): ∼ channel capacity

QC (v , l) =
ln # of obtainable values

ln max # of values

Motivating Example

▶ Vuln. a: WC , ¬SC , QC ≈ 0.08

▶ Vuln. b: WC , ¬SC , QC ≈ 0.08

We need something less one-dimensional.

12/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

A more promising approach

Evaluate the Domains of Control
The set DoCv ,l of obtainable values for v at location l .

Motivating example

▶ Vuln. a: DoCoob size = [264 − 296; 264 − 257]

▶ Vuln. b: DoCoob size = [1; 40]

Bonus: Scoring domains of control

Weighted QC (wQC): different threat level ω(n) for each value n
⇒ With ω : x 7→ 1

ln(2)x (bias toward smaller values / locality):

▶ Vuln. a: wQC (oob size) ≈ 2−58

▶ Vuln. b: wQC (oob size) ≈ 0.08

13/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

A more promising approach

Evaluate the Domains of Control
The set DoCv ,l of obtainable values for v at location l .

Motivating example

▶ Vuln. a: DoCoob size = [264 − 296; 264 − 257]

▶ Vuln. b: DoCoob size = [1; 40]

Bonus: Scoring domains of control

Weighted QC (wQC): different threat level ω(n) for each value n
⇒ With ω : x 7→ 1

ln(2)x (bias toward smaller values / locality):

▶ Vuln. a: wQC (oob size) ≈ 2−58

▶ Vuln. b: wQC (oob size) ≈ 0.08

13/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

A more promising approach

Evaluate the Domains of Control
The set DoCv ,l of obtainable values for v at location l .

Motivating example

▶ Vuln. a: DoCoob size = [264 − 296; 264 − 257]

▶ Vuln. b: DoCoob size = [1; 40]

Bonus: Scoring domains of control

Weighted QC (wQC): different threat level ω(n) for each value n
⇒ With ω : x 7→ 1

ln(2)x (bias toward smaller values / locality):

▶ Vuln. a: wQC (oob size) ≈ 2−58

▶ Vuln. b: wQC (oob size) ≈ 0.08

13/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Recap

14/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Introduction

Defining Attacker Control

Algorithms

Implementation and Experiments

Conclusion

15/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Algorithms for Weak, Strong and Quantitative Control

input
symbolic execution

concrete execution v = a

v = ɸ(i)

check WC,
SC, QC...

Weak Control

Quantifier-Free SMT: sat(ϕ(i) ̸= a)

Strong Control

Quantified SMT: sat(∀a, ∃ i such that ϕ(i) = a)
counterexample: get model for a in ∀i , ϕ(i) ̸= a

Quantitative Control

(Projected) Model Counting: count models for a in ϕ(i) = a

16/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Algorithms for Weak, Strong and Quantitative Control

input
symbolic execution

concrete execution v = a

v = ɸ(i)

check WC,
SC, QC...

Weak Control

Quantifier-Free SMT: sat(ϕ(i) ̸= a)

Strong Control

Quantified SMT: sat(∀a, ∃ i such that ϕ(i) = a)
counterexample: get model for a in ∀i , ϕ(i) ̸= a

Quantitative Control

(Projected) Model Counting: count models for a in ϕ(i) = a

16/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Algorithms for Weak, Strong and Quantitative Control

input
symbolic execution

concrete execution v = a

v = ɸ(i)

check WC,
SC, QC...

Weak Control

Quantifier-Free SMT: sat(ϕ(i) ̸= a)

Strong Control

Quantified SMT: sat(∀a, ∃ i such that ϕ(i) = a)
counterexample: get model for a in ∀i , ϕ(i) ̸= a

Quantitative Control

(Projected) Model Counting: count models for a in ϕ(i) = a

16/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Algorithms for Weak, Strong and Quantitative Control

input
symbolic execution

concrete execution v = a

v = ɸ(i)

check WC,
SC, QC...

Weak Control

Quantifier-Free SMT: sat(ϕ(i) ̸= a)

Strong Control

Quantified SMT: sat(∀a, ∃ i such that ϕ(i) = a)
counterexample: get model for a in ∀i , ϕ(i) ̸= a

Quantitative Control

(Projected) Model Counting: count models for a in ϕ(i) = a

16/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Issues with standard techniques

Taint Analysis

▶ can only disprove (weak) control

▶ false positives: t − t

▶ false negatives: load/write

Quantified SMT

▶ scalability (sometimes)

Projected Model Counting

▶ scalability!

17/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Issues with standard techniques

Taint Analysis

▶ can only disprove (weak) control

▶ false positives: t − t

▶ false negatives: load/write

Quantified SMT

▶ scalability (sometimes)

Projected Model Counting

▶ scalability!

17/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Issues with standard techniques

Taint Analysis

▶ can only disprove (weak) control

▶ false positives: t − t

▶ false negatives: load/write

Quantified SMT

▶ scalability (sometimes)

Projected Model Counting

▶ scalability!

17/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Measuring Domains of Control with Shrink and Split

Step 0: initalization

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [0, 264]

Step 1: shrinking

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, b]

▶ Z3: minimize and maximize (MaxSMT)

▶ update constraint to exclude infeasible values

18/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Measuring Domains of Control with Shrink and Split

Step 0: initalization

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [0, 264]

Step 1: shrinking

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, b]

▶ Z3: minimize and maximize (MaxSMT)

▶ update constraint to exclude infeasible values

18/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Measuring Domains of Control with Shrink and Split

Step 2: checking for Strong Control

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ no SC, we keep going!

Step 3: splitting

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, i [∪]i , b]
▶ i is an SC counterexample

19/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Measuring Domains of Control with Shrink and Split

Step 2: checking for Strong Control

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ no SC, we keep going!

Step 3: splitting

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, i [∪]i , b]
▶ i is an SC counterexample

19/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Measuring Domains of Control with Shrink and Split

Repeat!

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, c] ∪ [d , b]

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ we stop on SC

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l = [a, c] ∪ [d , b]

20/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Measuring Domains of Control with Shrink and Split

Repeat!

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, c] ∪ [d , b]

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ we stop on SC

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l = [a, c] ∪ [d , b]

20/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Measuring Domains of Control with Shrink and Split

Repeat!

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, c] ∪ [d , b]

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ we stop on SC

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l = [a, c] ∪ [d , b]

20/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Measuring Domains of Control with Shrink and Split

▶ output: set of intervals

▶ max guarantees: SC on each interval (no interrupt)

▶ min guarantees: WC on each interval

▶ refinement process ⇒ approximate results on interrupt

▶ bridges gap between qualitative and quantitative analysis

21/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Recap

22/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Introduction

Defining Attacker Control

Algorithms

Implementation and Experiments

Conclusion

23/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Implementation

Colorstreams

Inputs
v,l

Bug Finding
fuzzing

symbolic exec
...

Colorstreams

Tracing (Pin)

SE (Binsec)

Analysis
Policy

SMT solvers

PMC solvers

Control
over v

▶ precise dynamic binary-level analysis

▶ symbolic execution through Binsec

▶ single-path (for now)

24/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Evaluation

Benchmark
▶ 31 programs

▶ 9 real-world vulnerabilities

Research questions

▶ Is evaluating domains of control more precise in practice?

▶ How scalable are our algorithms in practice?

25/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Evaluation

Benchmark
▶ 31 programs

▶ 9 real-world vulnerabilities

Research questions

▶ Is evaluating domains of control more precise in practice?

▶ How scalable are our algorithms in practice?

25/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Evaluating Buffer Out-Of-Bounds Write Vulnerabilities

What does control look like in practice?

: weak

: strong

▶ only out-of-bounds values

26/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Evaluating Buffer Out-Of-Bounds Write Vulnerabilities

WC and SC are not so useful on their own

: weak

: strong

▶ In all cases we have WC but not SC...

27/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Evaluating Buffer Out-Of-Bounds Write Vulnerabilities

QC does not tell us much

: weak

: strong

▶ In all cases, there is some control

▶ It equalizes when we combine write offset and size + size of v

28/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Evaluating Buffer Out-Of-Bounds Write Vulnerabilities

But the Domains of Control are different (sometimes)!

: weak

: strong

Improvements over QC

motex1, cve-2022-30790, cve-2022-30552 :

▶ QC: mid to high level of control

▶ Domains: only very large write sizes

29/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Improving human analysis in the case of CVE-2022-30790

Analysis from human experts1

metadata corruption in linked list ⇒ arbitrary write

Domains of Control analysis

: weak

: strong

CVE-2022-30552

CVE-2022-30790

▶ does not look like arbitrary write

▶ looks (is) identical to CVE-2022-30552

▶ turns out, humans make mistakes
1
https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-

boot-cve-2022-30790-cve-2022-30552/
30/35

https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/
https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-boot-cve-2022-30790-cve-2022-30552/

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Recap: differentiating different values makes a difference!

Vulnerability CVSS WC / SC QC wQC Truth

motex1 (∼ a) ✗ ✗

motex2 (∼ b)
minesweeper2* ✗

cve-2021-3246 ✗ ✗

cve-2019-14192 ✗

cve-2019-14202 ✗

cve-2022-30790 ✗ ✗ ✗

cve-2022-30552 ✗ ✗ ✗

cve-2022-30790-2 ✗

*single-path analysis is an issue here

Domains of Control analysis (wQC) ⇒ more nuance

31/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Scalability

0 5 10 15 20 25 30 35 40 45 50
of problems solved

10 4

10 2

100

102

Cu
m

ul
at

iv
e

Ru
nt

im
e

(s
)

weak control
strong control
d4
ganak

approxmc
Newsome
S&S
S&SFB

Shrink and Split (S&S) performs quite well!

▶ decently fast (∼ approx PMC, << Newsome et al.1)

▶ always gives results (vs. PMC: no result on timeout)

1Newsome et al., PLAS 2009
32/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Introduction

Defining Attacker Control

Algorithms

Implementation and Experiments

Conclusion

33/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Conclusion

Bug prioritization based on Attacker Control

▶ formal definitions + algorithms

• Domains of Control in particular
• taint / counting are not up to the task

▶ Shrink and Split, a reasonable approach for DoC analysis

• scalable + can approximate + strong guarantees

▶ prioritization of real-world bugs with decent performance

Ongoing works

▶ further automation

▶ improve domains of control scoring with wQC

▶ combining multiple paths

▶ write a paper and get published!

34/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Conclusion

Bug prioritization based on Attacker Control

▶ formal definitions + algorithms

• Domains of Control in particular
• taint / counting are not up to the task

▶ Shrink and Split, a reasonable approach for DoC analysis

• scalable + can approximate + strong guarantees

▶ prioritization of real-world bugs with decent performance

Ongoing works

▶ further automation

▶ improve domains of control scoring with wQC

▶ combining multiple paths

▶ write a paper and get published!

34/35

Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

The End

Thank you for your attention.
Any questions?

(several positions available in the BINSEC team)

35/35

	Introduction
	Defining Attacker Control
	Algorithms
	Implementation and Experiments
	Conclusion

