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Oléron 05/04/24

1/35



Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

Introduction

Defining Attacker Control

Algorithms

Implementation and Experiments

Conclusion

2/35



Introduction Defining Attacker Control Algorithms Implementation and Experiments Conclusion

We find too many bugs!
Bugs are found faster than they can be fixed!

A concrete example: Syzbot1

▶ 24/7 fuzzing (mainly Linux)

▶ >4k since 2017

▶ ∼1k still open ↗

1https://syzkaller.appspot.com/upstream
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▶ developers cannot fix them all

▶ but not all of them are equally
dangerous
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Motivating example

Vulnerability a

size < 40

1 char buf[256];
2
3 if(size > 296)
4 size = 296;
5 if(size < 40) // should be size > 40
6 size -= 40;
7 memcpy(buf, msg, size);

write size ∈ [264 − 40; 264 − 1]
⇒ crash
⇒ maybe not that dangerous

Vulnerability b

size > 256

1 char buf[256];
2
3 if(size > 296)
4 size = 296;
5 if(size < 40) // should be size > 40
6 size −= 40;
7 memcpy(buf, msg, size);

write size ∈ [257; 296]
⇒ return address overwritten
⇒ DANGER!!!
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We need efficient bug prioritization

Fuzzing & CO

crashing inputs

Evaluation

ranked vulnerabilities

TO FIX

OOB +++ ...

UAF ++

OOB ++

OOB +
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Existing approaches are lackluster

Approach Pros Cons

vulnerability type + easy - imprecise (a and b
⇒ threat level + scalable are both OOB writes)

Automated Exploit + strong indicator - lack of genericity
Generation1 (on success) - false negatives

AI2 + scalable - lack of transparency
- focus on user reports

Robust Reachability3 + reliability - not the full picture
indicator

⇒ lack of formal methods research on this subject

1Avgerinos et al., NDSS 2011
2Le et al., ACM Computing Surveys 2022
3Girol et al., CAV 2021
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Goals and Challenges

Goals
▶ precise bug prioritization based on formal methods

▶ good-enough scalability

▶ fully automated

Challenges

▶ what is exploitability? non-exploitability?

▶ precision vs. genericity

▶ poor scalability of precise analysis techniques
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Main proposition

Evaluate vulnerabilities based on Attacker Control
▶ the ability of attackers to obtain desired effects

▶ without assuming their goals
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Our contributions

Exploration of formal definitions for control + algorithms

▶ [new] weak / strong control

▶ existing notions of quantitative information flow
→ quantitative control

▶ [new] domains of control

+ why taint analysis is not enough

Shrink and Split algorithm

measuring domains of control based on qualitative notions

▶ more scalable than counting

▶ more nuanced results

+ promising experiments on real-world vulnerabilities
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Intuitive definition

- location l
- variable vinput concrete execution

example: v ∼ buffer overflow size
What does attacker control over v mean?

Intuition
control = ability to obtain desired values

more obtainable values
⇒? more control
⇒? higher exploitability
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Straightforward solutions

Qualitative [new definitions]

Weak Control (WC): at least 2 obtainable values
Strong Control (SC): all values are obtainable

Quantitative [more standard]

Quantitative Control (QC): ∼ channel capacity

QC (v , l) =
ln # of obtainable values

ln max # of values

Motivating Example

▶ Vuln. a: WC , ¬SC , QC ≈ 0.08

▶ Vuln. b: WC , ¬SC , QC ≈ 0.08

We need something less one-dimensional.
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A more promising approach

Evaluate the Domains of Control
The set DoCv ,l of obtainable values for v at location l .

Motivating example

▶ Vuln. a: DoCoob size = [264 − 296; 264 − 257]

▶ Vuln. b: DoCoob size = [1; 40]

Bonus: Scoring domains of control

Weighted QC (wQC): different threat level ω(n) for each value n
⇒ With ω : x 7→ 1

ln(2)x (bias toward smaller values / locality):

▶ Vuln. a: wQC (oob size) ≈ 2−58

▶ Vuln. b: wQC (oob size) ≈ 0.08
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Recap
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Algorithms for Weak, Strong and Quantitative Control

input
symbolic execution

concrete execution v = a

v = ɸ(i)

check WC,
SC, QC...

Weak Control

Quantifier-Free SMT: sat(ϕ(i) ̸= a)

Strong Control

Quantified SMT: sat(∀a, ∃ i such that ϕ(i) = a)
counterexample: get model for a in ∀i , ϕ(i) ̸= a

Quantitative Control

(Projected) Model Counting: count models for a in ϕ(i) = a
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Issues with standard techniques

Taint Analysis

▶ can only disprove (weak) control

▶ false positives: t − t

▶ false negatives: load/write

Quantified SMT

▶ scalability (sometimes)

Projected Model Counting

▶ scalability!
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Measuring Domains of Control with Shrink and Split

Step 0: initalization

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [0, 264]

Step 1: shrinking

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, b]

▶ Z3: minimize and maximize (MaxSMT)

▶ update constraint to exclude infeasible values
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Measuring Domains of Control with Shrink and Split

Step 2: checking for Strong Control

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ no SC, we keep going!

Step 3: splitting

0 264

0 264a = min(v, [0, 264]) max(v, [0, 264]) = b

0 264

2640 theoretical value range for v

a

infeasible

b

0 264a bnot SC

ba

0 264dc ba SC SC

0 264

max(v, [a, i]) = c

i

i d = max(v, [i, b])

dc ba

▶ DoCv ,l ⊂ [a, i [∪]i , b]
▶ i is an SC counterexample
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Measuring Domains of Control with Shrink and Split
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Measuring Domains of Control with Shrink and Split

▶ output: set of intervals

▶ max guarantees: SC on each interval (no interrupt)

▶ min guarantees: WC on each interval

▶ refinement process ⇒ approximate results on interrupt

▶ bridges gap between qualitative and quantitative analysis
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Recap
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Implementation

Colorstreams

Inputs
v,l

Bug Finding
fuzzing

symbolic exec
...

Colorstreams

Tracing (Pin)

SE (Binsec)

Analysis
Policy

SMT solvers

PMC solvers

Control
over v

▶ precise dynamic binary-level analysis

▶ symbolic execution through Binsec

▶ single-path (for now)
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Evaluation

Benchmark
▶ 31 programs

▶ 9 real-world vulnerabilities

Research questions

▶ Is evaluating domains of control more precise in practice?

▶ How scalable are our algorithms in practice?
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Evaluating Buffer Out-Of-Bounds Write Vulnerabilities

What does control look like in practice?

: weak

: strong

▶ only out-of-bounds values

26/35
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Evaluating Buffer Out-Of-Bounds Write Vulnerabilities

WC and SC are not so useful on their own

: weak

: strong

▶ In all cases we have WC but not SC...

27/35
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Evaluating Buffer Out-Of-Bounds Write Vulnerabilities

QC does not tell us much

: weak

: strong

▶ In all cases, there is some control

▶ It equalizes when we combine write offset and size + size of v

28/35
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Evaluating Buffer Out-Of-Bounds Write Vulnerabilities

But the Domains of Control are different (sometimes)!

: weak

: strong

Improvements over QC

motex1, cve-2022-30790, cve-2022-30552 :

▶ QC: mid to high level of control

▶ Domains: only very large write sizes
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Improving human analysis in the case of CVE-2022-30790

Analysis from human experts1

metadata corruption in linked list ⇒ arbitrary write

Domains of Control analysis

: weak

: strong

CVE-2022-30552

CVE-2022-30790

▶ does not look like arbitrary write

▶ looks (is) identical to CVE-2022-30552

▶ turns out, humans make mistakes
1
https://research.nccgroup.com/2022/06/03/technical-advisory-multiple-vulnerabilities-in-u-

boot-cve-2022-30790-cve-2022-30552/
30/35
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Recap: differentiating different values makes a difference!

Vulnerability CVSS WC / SC QC wQC Truth

motex1 (∼ a) ✗ ✗

motex2 (∼ b)
minesweeper2* ✗

cve-2021-3246 ✗ ✗

cve-2019-14192 ✗

cve-2019-14202 ✗

cve-2022-30790 ✗ ✗ ✗

cve-2022-30552 ✗ ✗ ✗

cve-2022-30790-2 ✗

*single-path analysis is an issue here

Domains of Control analysis (wQC) ⇒ more nuance
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Scalability

0 5 10 15 20 25 30 35 40 45 50
# of problems solved

10 4

10 2
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(s
)

weak control
strong control
d4
ganak

approxmc
Newsome
S&S
S&SFB

Shrink and Split (S&S) performs quite well!

▶ decently fast (∼ approx PMC, << Newsome et al.1)

▶ always gives results (vs. PMC: no result on timeout)

1Newsome et al., PLAS 2009
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Conclusion

Bug prioritization based on Attacker Control

▶ formal definitions + algorithms

• Domains of Control in particular
• taint / counting are not up to the task

▶ Shrink and Split, a reasonable approach for DoC analysis

• scalable + can approximate + strong guarantees

▶ prioritization of real-world bugs with decent performance

Ongoing works

▶ further automation

▶ improve domains of control scoring with wQC

▶ combining multiple paths

▶ write a paper and get published!
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The End

Thank you for your attention.
Any questions?

(several positions available in the BINSEC team)
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