# Lightning Network

Formal verification of a payment protocol

Léo Louistisserand Joint work with Simon Jeanteur and Matteo Maffei

(Now PhD student at LORIA in e-voting)

03/04/2024



















### Context



Bitcoin's lack of scalability → off-chain protocols



Protocol not proven → attacks



Our goal: prove the security of a fix

### Core idea



Lock coins on the chain



Exchange this money off-chain



Use the chain to cash in

## Opening a channel

Published on-chain



Funding transaction

Input
Alice: 5
Bob: 5

A&B: 10

Saved off-chain



| Closing transaction |                        |
|---------------------|------------------------|
| Input<br>A&B: 10    | Output Alice: 5 Bob: 5 |

## Updating a channel







| New transaction |                    |
|-----------------|--------------------|
| A&B: 10         | Alice: 4<br>Bob: 6 |

## Revocation mechanism

#### Signed by Alice, held by Bob

| A&B: 10             | $\frac{\Delta t > 1 \text{ hour}}{\text{Alice: 5}}$ $\frac{\text{Bob: 5}}{\text{Bob: 10}}$ Alice: 10 |
|---------------------|------------------------------------------------------------------------------------------------------|
| h(r <sub>kB</sub> ) |                                                                                                      |

### Signed by Bob, held by Alice

| A&B: 10 | $\frac{\Delta t > 1 \text{ hour}}{\text{Alice: 5}}$ $\frac{\text{Bob: 5}}{\text{Bob: 10}}$ |
|---------|--------------------------------------------------------------------------------------------|
| h(r     | kA)                                                                                        |

## Revocation mechanism



## Lightning Network

What if Alice and Bob dont share a channel?



## Hashed Timelock Contract

#### Signed by Alice, held by Indiana

| Alice: 5<br>Indiana: 5    |  |
|---------------------------|--|
|                           |  |
| s; t < 18h00              |  |
| Alice: 4<br>Indiana: 6    |  |
| rk <sub>l</sub> Alice: 10 |  |
| Alice. To                 |  |
| ( <sub>1</sub> )          |  |
|                           |  |

#### Signed by Indiana, held by Bob

| ,                         |                       |
|---------------------------|-----------------------|
| I&B: 17                   | Δt > 1 hour           |
|                           | Indiana: 12<br>Bob: 5 |
|                           | s; t < 17h00          |
|                           | Indiana: 11<br>Bob: 6 |
|                           | rk <sub>B</sub>       |
|                           | Indiana: 17           |
| h(s), h(rk <sub>B</sub> ) |                       |

9/21

## Hashed Timelock Contract

#### Signed by Alice, held by Indiana

| A&I: 10                   | Δt > 1 hour                        |
|---------------------------|------------------------------------|
|                           | Alice: 5<br>Indiana: 5             |
|                           | s; t < 18h00                       |
|                           | Alice: 4 - fee<br>Indiana: 6 + fee |
|                           | rk <sub>l</sub> Alice: 10          |
| h(s), h(rk <sub>l</sub> ) |                                    |

#### Signed by Indiana, held by Bob

| I&B: 17                   | Δt > 1 hour                 |
|---------------------------|-----------------------------|
|                           | Indiana: 12<br>Bob: 5       |
|                           | s; t < 17h00                |
|                           | Indiana: 11<br>Bob: 6       |
|                           | rk <sub>B</sub> Indiana: 17 |
|                           | maiana: 17                  |
| h(s), h(rk <sub>B</sub> ) |                             |

## Wormhole attack



## Desired properties



Honest participants cannot lose money



Honest participants get their fees

12 / 21

## The Proverif tool



## Modelling a transaction



Transaction is represented by a quadruplet  $\rightarrow$  tx = (pk1, pk2, b, h)

Léo Louistisserand Lightning Network 03/04/2024 14 / 21

## Modelling a payment channel



Challenge: passing the state from one process to the other.

## Modelling the whole network



#### Threat model:

- Honest agents communicate via authenticated and secret channels
- All agents can be compromised



## Modelling the properties

- Indiana cannot lose money
  - No money blocked: Indiana can always close the channel
  - No punishment possible: Attacker cannot punish Indiana
  - Defense against old states: Indiana can punish old transactions
  - Unforgeability: attacker cannot forge transaction
- Indiana gets the fee
  - Atomicity: when Alice has paid, Indiana is able to debit

## **Difficulties**

| Obstacle encountered       | Solution adopted                        |
|----------------------------|-----------------------------------------|
| Time                       | Not modeling it                         |
| Passing the state          | Using events                            |
| Liveness property          | Tweak it into a correspondance property |
| Unbounded number of agents | Reduction to a bounded model            |

### Trick



Liveness property: Indiana always holds a non-revocated transaction



Correspondance property: if transaction n Indiana holds is revocated, Indiana holds transaction n+1



Léo Louistisserand Lightning Network 03/04/2024 19 / 21

### Reduced model



#### **Theorem**

Attack on the full network  $\Longrightarrow$  attack on a 4-agent chain + oracles

### Reduced model



#### **Theorem**

Attack on the full network  $\Longrightarrow$  attack on a 4-agent chain + oracles

The attacker can simulate processes thanks to oracles.

```
let signing_oracle(sk: private_key)
    in(public, tx: transaction);
    event oracle_signs(tx, sk);
    out(public, sign(tx, sk)).
```

### Conclusion



Modeling the LN protocol



Expressing all properties as correspondance property



Using a reduced model and a pen-and-paper proof



Next step: take time into account