
Steve Kremer, Inria Nancy, France

DY Fuzzing: 
Putting a Dolev-Yao attacker 
in the fuzzing loop

Journées du GT MFS 2024

joint work with  
Lucca Hirschi & Tom Gouville & Michaël Mera 

 (Inria)
Max Ammann  
(Trail of Bits)

&



Secure Cryptographic Protocols



/31

Cryptographic Protocols
Informal definition 
concurrent program relying on cryptography 
to secure communications 

• Notoriously difficult to design and deploy securely


• Loads of failure stories: attacks, fixes, attacks, fixes, attacks, etc.

Security goals: confidentiality, integrity/authentication, etc. 


Examples: TLS, EMV (credit cards), RFID, e-voting, mobile com., etc.

☞ What can we do today to avoid such failures in the future?
3



/31

Affects the specification

Spatial and temporal memory bugs 
(e.g. buffer-overflow)

Protocol vulnerabilities 
(e.g. authentication violation)

DY formal verification

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock
SKIP

CVE-2021-3449

POODLE
FREAK

CVE-2022-25640Apple's GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures             2014-2022

CVE-2022-25638

4



1: Formally Verifying   
1: Cryptographic Protocols 
1: Designs



/31

☞ Formal model for analyzing cryptographic protocols amenable to automation

6

Dolev-Yao Formal Model

Threat model 👺:

•  active adversary controls the network: intercept, modify, inject messages

•  is able to use cryptography

•  cryptography considered black-box (attacker’s interface = functionality)


Attacker can use encryption and decryption but does not see the internals (e.g., AES S-box) 
and cannot exploit potential leaks/biasis


« Messages as formal terms » paradigm: messages model = term algebra

1. Set of function symbols:     e.g. 

2. Equivalence relation:           e.g. 

𝗌𝖾𝗇𝖼( ⋅ , ⋅ ), 𝗌𝖽𝖾𝖼( ⋅ , ⋅ )
𝗌𝖽𝖾𝖼(𝗌𝖾𝗇𝖼(m, k), k) = m



/317

Dolev-Yao Formal Model

✓ Sweet spot between precision (of results) and automation (verification algorithms)

Excel at finding logical attacks 👺: protocol vulnerabilities at the design-level

Proverif Tamarin

✗  Limited to specifications, existing implementations are out of scope (e.g., OpenSSL)



/31

Affects the specification

Spatial and temporal memory bugs 
(e.g. buffer-overflow)

Protocol vulnerabilities 
(e.g. authentication violation)

DY formal verification

Bit-Level 
Fuzzers  
e.g. AFLnet

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock
SKIP

CVE-2021-3449

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures             2014-2022

CVE-2022-25638

8



2: Fuzzing   
1: Cryptographic Protocols 
1: Implementations 
1: —State-of-the-Art



/31

Bit-level fuzzing (AFL-like)

Output: 0x4fad1...

Program 
Under 
Test

Random   mutation

Crash ↯

feedback

Corpus of 
test-cases

What is fuzzing? 
● Instrument the PUT to record feedback    

(e.g. code coverage)

● Store a corpus of test-cases 

● Fuzzing loop: while true do

○ Pick a test-case 
○ Apply random transformation = mutation 
○ Execute + collect feedback 
○ Add it to the corpus if interesting  

according to feedback = progress 
(e.g. new coverage) 

Pick a test-case

Test-case: 0xd404

Execute

Test-case: 0xe504

?

Output: 0x4fad1...

Crash ↯

feedback

Execute

Seed corpus

10

Examples of mutations:

• bit flip,

• byte increment, 

• mixing bytes around



/31

✓ Finds memory/crash vulnerabilities in implementations 
E.g. buffer-overflow, use after free, RCE, etc.

Bit-level fuzzing (AFL-like)

✗ Bitstring-level mutations only

• No structural message modification 

e.g. negligible probability of computing a valid 
signature through bit-level mutations


• No message flow modification 

e.g. protocol executions != one bitstring


☞ logical attack states are not reached 

☞ + miss some memory vulnerabilities requiring those


✗ Detect crashes only

☞ Protocol vulnerabilities are not detected 

  e.g. authentication bypass (no crash)
11

Output: 0x4fad1...

Program 
Under 
Test

Random   mutation

Crash ↯

feedback

Corpus of 
test-cases

Pick a test-case

Test-case: 0xd404

Execute

Test-case: 0xe504

?



/31

Affects the specification

Spatial and temporal memory bugs 
(e.g. buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g. authentication violation)

Requires message flow

modifications

Bit-Level 
Fuzzers  
e.g. AFLnet

DY formal verification

HeartBleed

3SHAKE

Gnu's GotoFail

WinShock
SKIP

CVE-2021-3449

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

LOGJAM

CVE-2022-25638

Retrospective of TLS Failures             2014-2022

12

CloudBleed

Renegotiation



/31

Affects the specification

Spatial and temporal memory bugs 
(e.g. buffer-overflow)

Protocol vulnerabilities 
(e.g. authentication violation)

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g. AFLnet

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

Renegotiation

CVE-2022-39173 (us)

CVE-2022-38153 (us)

Gnu's GotoFail

WinShock

CVE-2022-25638

CVE-2022-42905 (us)

CVE-2022-38152 (us)

SKIP

CVE-2021-3449

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAKFREAK* CVE-2022-25638

CVE-2021-3449

CVE-2022-25640

Retrospective of TLS Failures             2014-2022

13

CVE-2023-6936 (us)

Requires structural modifications 
to messages

CVE-2023-6936 (us)



3: Our proposal: 
3: Dolev-Yao Fuzzing

Paper accepted at IEEE Security and Privacy 2024

Preprint IACR 2023/057


tlspuffin



DY Fuzzing Design



/31

• We build on « messages as formal terms »: and assume a term algebra 

• Test cases = symbolic traces expressing DY attacker 👺’s actions 
 
tr := out(r, w).tr  : r is a role (client/server) and w is a variable (attacker knows) 
     |  in(r, R).tr     : R is a term in the term algebra (computed by attacker) 
     |  0


 
 

Example: tra=out(cl,w1).in(serv,w1).out(serv,w2).in(cl, senc(sdec(w2,ka), kb)).0

DY Fuzzing: Big Picture
DY Fuzzer = DY attacker 👺 in a fuzzing loop

16

Attacker 👺 only relays 
the message w1 to serv

Attacker 👺 computes a new term R 
out of w2 and sends it to cl 



/31

DY Fuzzer = MITM DY attacker

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)

1. out(r, w) ☞ call PUT role function to read bitstring bw from output buffer of r 

2. in(r, R) ☞


a. call ref/PUT crypto functions to evaluate R into a bitstring bR 

E.g. eval(sign(R’,sk)) = RSAPUT(eval(R’),bsk) 
         eval(w) = bw 
         bsk is obtained by calling genKeyPUT() 

b. call PUT role function to write bR onto input buffer of r + make r progress

Executor (1 + 2.b): require a lightweight instrumentation of the PUT 
Mapper (2.a): requires a per-protocol « executable term-algebra »

DY Fuzzing: Big Picture

tr := out(r, w).tr 
      |  in(r, R).tr 
      | 0

☞ Do not require a protocol DY model but only a DY attacker model (i.e., term algebra)
17



/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
              seeds corpus = happy flows


• Scheduler: FIFO


• Mutator⭐: custom trace mutations


• Harness⭐: Mapper + Executor + Claims


• Obj. Oracle⭐: DY security properties⭐ 
(e.g. agreement) + ASAN (memory vulns.)


• Feedback: PUT code-coverage

18



/31

DY mutations
Action-level Mutations


• Skip: remove random action (in/out)


• Repeat: randomly copy and insert an action


Term-level Mutations⭐


• Swap: Swap two (sub-)terms in the trace

• Generate: Replace a term by a random one

• Replace-Match: Swap two function symbols in the trace (e.g. SHA2 <-> SHA3)

• Replace-Reuse: Replace a (sub-)term by another (sub-)term in the trace

• Replace-and-Lift: Replace a (sub-)term by one of its sub-terms


tr := out(r, w).tr 
      |  in(r, R).tr 
      | 0

19



/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
              seeds corpus = happy flows


• Scheduler: FIFO


• Mutator⭐: custom trace mutations


• Harness⭐: Mapper + Executor + Claims


• Obj. Oracle⭐: DY security properties⭐ 
(e.g. agreement) + ASAN (memory vulns.)


• Feedback: PUT code-coverage

20



/31

DY Objective Oracle
Memory-related objective oracle

•  Classical with bit-level fuzzing: code instrumentation with AddressSanitizer (ASan)


DY Security properties ⭐


• Introduce claims triggered by roles executing the PUT (part of Harness/Executor) 
E.g. agreement claims: Agr(client, pk, m)@i client believes to have agreed with server with pk on m @ ith action


• Classical in DY models: security properties expressed as 1st-order formula 
E.g. agreement property ∀pk,m: Agr(client, pk, m)@i ⇒ Run(server, pk, m)@j  ⋀ j<i 

•  DY Objective oracle also checks DY security properties


• Gather all the claims throughout traces executions at the PUT


• Check all the DY security properties (where terms are concretized into bitstrings)

+

21



tlspuffin Implementation



/31

tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC)  (tlspuffin on Github)


• Built on LibAFL, a modular library to build fuzzers (+ new/custom components⭐)


• In-memory buffers, delightfully parallel, fast (700 execs/s/core)


• Modular: new protocol and new PUTs can be added


• For TLS: 189 function symbols, harnessed PUTs: OpenSSL, WolfSSL, BoringSSL, LibreSSL

23



tlspuffin Results



/31

tlspuffin findings 👺
• We selected a small 

benchmark suite: recent 
logical attacks found on 
OpenSSL (most used) and 
WolfSSL (IoT)


• Found by tlspuffin in hours 
or seconds (SKIP), 
systematic reproducibility!


• We ran fuzzing campaigns 
on the harnessed PUTs and 
found 5 new CVEs 
☞Not found by other fuzzers

25

CVE ID AKA CVSS Type New Version TLS
2021-3449 SDOS1 5.9 Server DoS, M ✗ 1.1.1j 1.2

2022-25638 SIG 6.5 Auth. Bypass, P ✗ 5.1.0 1.3
2022-25640 SKIP 7.5 Auth. Bypass, P ✗ 5.1.0 1.3
2022-38152 SDOS2 7.5 Client DoS, M ✓ 5.4.0 1.3
2022-38153 CDOS 5.9 Server DoS, M ✓ 5.3.0 1.2
`2022-39173 BUF 7.5 Server DoS, M ✓ 5.5.0 1.3
2022-42905 HEAP 9.1 Info. Leak, M ✓ 5.5.0 1.3
2023-6936 HEAP2 N/A Info. Leak, M ✓ 5.6.5  1.3



/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)

2. Forges a malicious ClientHello([c;..;c]) message such that


(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and

(b) It has as list of supported cipher suites with duplicates of c (say n times)


☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption

☞ Flaw 1: actually computes « multiset-intersection » so suitesS  will contain duplicates of c (say k times)


Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26



/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)

2. Forges a malicious ClientHello([c;..;c]) message such that


(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and

(b) It has as list of supported cipher suites with duplicates of c (say n times)


☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption

☞ Flaw 1: actually computes « multiset-intersection » so suitesS  will contain duplicates of c (say k times)


Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

27

How WolfSSL implements ∩ with refineSuites(suitesC)@tls13.c:4355

// suitesS initially with offered suites, MAX_SZ allocated 

byte suites[MAX_SZ]; int suiteSz = 0; // supposed to compute suitesS ∩ suitesC 

for (i = 0; i < suitesS.size; i += 1) {
      for (j = 0; j < suitesC.size; j += 1) {   // suitesC.size <= MAX_SZ
            if (suitesS->suites[i] == suitesC->suites[j]) {
                suites[suiteSz++] = suitesC->suites[j]; } } }
XMEMCPY(suitesS, &suites, sizeof(suites));  



/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)

2. Forges a malicious ClientHello([c;..;c]) message such that


(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and

(b) It has as list of supported cipher suites with duplicates of c (say n times)


☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption

☞ Flaw 1: actually computes « multiset-intersection » so suitesS  will contain duplicates of c (say k times)

☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC|  ≤  MAX_SZ = 150 

(c) Is ill-formed and will be rejected but late (after call to refineSuites), mess with supportGroupExtension


☞ Server rejects it and sends a HelloRetryRequest but

☞ Flaw 2: side-effects of refineSuites are not reverted 
☞ From now on, refineSuites invariant is broken: suitesS contains n duplicates of c 

3. Send ClientHello([c;..;c]) again, refineSuites is called again, the resulting buffer suites that contains 
k2 = n2 ciphers c is copied into suitesS


☞ For n = 13, we already overwrite the suitesS buffer allocated on MAX_ciphers_list_length = 150

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

28



/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)

2. Forges a malicious ClientHello([c;..;c]) message such that


(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and

(b) It has as list of supported cipher suites with duplicates of c (say n times)


☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption

☞ Flaw 1: actually computes « multiset-intersection » so suitesS  will contain duplicates of c (say k times)

☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC|  ≤  MAX_SZ = 150 

(c) Is ill-formed and will be rejected but late (after call to refineSuites), mess with supportGroupExtension


☞ Server rejects it and sends a HelloRetryRequest but

☞ Flaw 2: side-effects of refineSuites are not reverted 
☞ From now on, refineSuites invariant is broken: suitesS contains n duplicates of c 

3. Send ClientHello([c;..;c]) again, refineSuites is called again, the resulting buffer suites that contains 
k2 = n2 ciphers c is copied into suitesS


☞ For n = 13, we already overwrite the suitesS buffer allocated on MAX_ciphers_list_length = 150

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

29

 
An overflow on the stack of max 44700 bytes (controlled by n so is attacker 👺-controlled).

☞ Therefore, large portions of the stack can get overwritten, including return addresses (confirmed)
☞ Potential RCE (unconfirmed)
☞ Potential for negotiating ciphers that server should reject (downgrade) 



DY Fuzzing Future Work



/31

Future Work - Evaluation
• tlspuffin always found the new CVEs

• state-of-the art competitive fuzzers never found any of them

We can explain this with qualitative evidences but quantitative evidences are hard to obtain


• Code-coverage is a poor metric and prone to exhaustion 
 
 
 
E.g. client accepting a legitimate server’s certificate ~coverage accepting illegitimate cert.

   A statement reached from an attack state is similarly counted as if reached from the happy flow

31

☞ Need for a domain-specific DY-based notion of coverage + balance with code-cov.



/31

Future Work (cont.)

[WIP] Combine DY fuzzing with bit-level fuzzing (WIP): reach « deep states » with DY 
attacker and then smash the PUT with some bit-level mutations 

Apply DY fuzzing to more protocols (e.g. WPA2, TelCo) and PUTs 

Long-Term :

•  (Partially) Automate Mapper and Harness → PUT-agnostic DY fuzzer

•  Connect further with DY verifiers (ProVerif, Tamarin)

32

Improved objective oracle

•  Differential fuzzing: save t as objective when WolfSSL(t) ≄ OpenSSL(t) 
•  Or extend the oracle: +properties & +compromise scenarios



/31

Summary of Contributions

1. A new approach to fuzzing cryptographic 
protocols  
connecting the DY formal approach with fuzzing 
→ captures for the first time the class of logical 
attacks / DY attacker


2. DY Fuzzing design specification


3. tlspuffin: full-fledged, modular, efficient DY fuzzer 
implementation for TLS


4. Evaluate tlspuffin on TLS libraries:


• (re)found 8 vulnerabilities


• including 5 new ones (incl. 1 critical & 2 high)

Paper will appear at IEEE S&P 2024

Preprint IACR 2023/057


Project ANR JCJC 
→ Looking for students/postdocs/engineers


33


