DY Fuzzing:
Putting a Dolev-Yao attacker
In the fuzzing loop

joint work with

Steve Kremer’ Inria Nancy! France Max Ammann & Lucca Hirschi & Tom Gouville & Michaél Mera
Journées du GT MFS 2024 (Trail of Bits) (Inria)

Secure Cryptographic Protocols

Cryptographic Protocols

Informal definition

concurrent program relying on cryptography
to secure communications

Security goals: confidentiality, integrity/authentication, etc.

Examples: TLS, EMV (credit cards), RFID, e-voting, mobile com., etc.

e Notoriously difficult to design and deploy securely

e | oads of failure stories: attacks, fixes, attacks, fixes, attacks, etc.

= \What can we do today to avoid such failures in the future?

3/31

Retrospective of TLS Failures &/ 2014-2022

Affects the specification

HeartBleed

Gnu's GotoFail Apple's GotoFail CVE-2022-25640

CVE-2021-3449

CloudBleed

WinShock

Protocol vulnerabilities

Spatial and temporal memory bugs
(e.g. buffer-overflow) (e.g. authentication violation)

1: Formally Verifying
Cryptographic Protocols
Designs

Dolev-Yao Formal Model

= Formal model for analyzing cryptographic protocols amenable to automation

Threat model &:

e active adversary controls the network: intercept, modify, inject messages
* |s able to use cryptography
o cryptography considered black-box (attacker’s interface = functionality)

Attacker can use encryption and decryption but does not see the internals (e.g., AES S-box)
and cannot exploit potential leaks/biasis

« Messages as formal terms » paradigm: messages model = term algebra
1. Set of function symbols: e.g.senc(-, -),sdec(-,)
2. Equivalence relation: e.g. sdec(senc(m, k), k) = m

6 /31

Dolev-Yao Formal Model

v Sweet spot between precision (of results) and automation (verification algorithms)
Excel at finding logical attacks @&: protocol vulnerabilities at the design-level

qe,
9
"‘
w\/

Proverif Tamarin

X Limited to specifications, existing implementations are out of scope (e.g., OpenSSL)

7 /31

Retrospective of TLS Failures &/ 2014-2022

Affects the specification

HeartBleed

Gnu's GotoFail Apple’s GotoFail CVE-2022-25640

Bit-Level

Fuzzers
e.g. AFLnet

CVE-2021-3449

CloudBleed

WinShock

Protocol vulnerabilities

Spatial and temporal memory bugs
(e.g. buffer-overflow) (e.g. authentication violation)

8 /31

2. Fuzzing
Cryptographic Protocols
Implementations
— State-of-the-Art

Bit-level fuzzing (AFL-like)

What is fuzzing?

e Instrument the PUT to record feedback Pick a test-case
(e.g. code coverage)

e Store a corpus of test-cases

A
Test-case: 0xd404 E

Random | mutation

A
N
Seed corpus—» Corpus of Test-case: 0xe504 E
test-cases
? Execute
e Fuzzing loop: while true do
o Pick a test-case toedback Program

Under
Test

—e e

o Apply random transtformation = mutation

o Execute + collect feedback Examples of mutations:
Crash 4

, . .+ bit flip

o Add itto the corpus if interestin -

. P < byte increment, Output: Ox4fad1...
according to feedback = progressmixing bytes around

(e.g. new coverage)

10/31

Bit-level fuzzing (AFL-like)

v Finds memory/crash vulnerabilities in implementations
E.g. buffer-overflow, use after free, RCE, etc.

A
Test-case: 0xd404 E

Random | mutation

X Bitstring-level mutations only Pick a test-case

* No structural message modification
e.g. negligible probability of computing a valid

A
signature through bit-level mutations il% corpus of Test-case: Oxe504 E
* No message flow modification 2 lExecute
e.g. protocol executions != one bitstring
& |logical attack states are not reached feedback v Onder
& + mMiss some memory vulnerabilities requiring those e
Crash 4
X Detect crashes only Output: Oxdfad..

15~ Protocol vulnerabilities are not detected
e.g. authentication bypass (no crash)

11/31

Retrospective of TLS Failures & 2014-2022

Affects the specification

Spatial and temporal memory bugs Protocol vulnerabilitie
(e.g. buffer-over flow) (e.q. authenticatlon V|olation)

\
N

NANANAN

Retrospective of TLS Failures & 2014-2022

Affects the specification

- CVE-2023-6936 (us)
gartBleeg Requires message flow
/"A modifications

\

N

Gnu's GotoFail Apple’s GotoFail CVE-2022-25640

T— :—-

CVE-2021-3449

Bit-Level

Fuzzers
e.g. AFLnet

SN

CVE-2022-39173 (us) | | CVE-2022-38152 (us)

| ——m
f— S CVE-2022-38153 (us)

CVE-2023-6936 (US) e

B ——

| EREAKH CVE-2022-25638

CVE-2022-42905 (us)

WinShock — ——

““““‘

Spatial and temporal memory bugs Protocol vulnerabilities
(e.g. buffer-overflow) DY Fuzzing (e.g. authentication violation

DY formal verification’

Lz e —~— S 4
)

I ; B ot
{ 0 W B
\ 0
AN L he - Y
= i
=T Ny L] |'3
==
// il = o — S
— P e <
Z Z 0) i i)
> g 1 ’r -~
£ 7 V74 1
ﬁ/? 8' _

A

tispuffin

DY Fuzzing: Formal Dolev-Yao Models Meet Protocol Fuzz Testing

Max Ammann Lucca Hirschi Steve Kremer
Independent Researcher & Inria Nancy Grand-Est Inria Nancy Grand-Est
Trail of Bits Université de Lorraine, LORIA, France Université de Lorraine, LORIA, France
max@ maxammann.org lucca.hirschi@inria.fr steve.kremer@inria.fr

Paper accepted at IEEE Security and Privacy 2024
Preprint IACR 2023/057

DY Fuzzing Design

DY Fuzzing: Big Picture

DY Fuzzer = DY attacker & in a fuzzing loop

 We build on « messages as formal terms »: and assume a term algebra

 Test cases = symbolic traces expressing DY attacker &’s actions

tr := out(r, w).tr : r is a role (client/server) and w is a variable (attacker knows)
in(r, R).tr : Ris aterm in the term algebra (computed by attacker)

0
Example: tro=out(cl,w1).in(serv,wq).out(serv,w-).in(cl, senc(sdec(w kj), ky)).0
\/ \/
Attacker @& only relays Attacker @ computes a new term R

the message wjtoserv out of wo and sends it to cl 16/31

DY Fuzzer = MITM DY attacker

DY Fuzzing: Big Picture

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)
1. out(r, w) = call PUT role function to read bitstring b,, from output buffer of r

2. In(r, R) =
a. call ref/PUT crypto functions to evaluate R into a bitstring bg tr = 9ut(r§w).tr
E.g. eval(sign(R’,sk)) = RSApyt(eval(R’),bg) Om(r’).tr

eval(w) = b,,
b, is obtained by calling genKeypyr()

T — E—

b. call PUT role function to write bg onto input buffer of r + make r progress

Executor (1 + 2.b): require a lightweight instrumentation of the PUT
Mapper (2.a): requires a per-protocol « executable term-algebra »

= Do not require a protocol DY model but only a DY attacker model (i.e., term algebra)

17/31

DY Fuzzer components

4 H

Observe
execution

utate trace

e« State,.: test-cases = DY traces,
seeds corpus = happy flows

Mutational Stage

A 4 utated test case

» PUT Observers
& g %
o Scheduler: FIFO S
with observations
\ 4
. : Scheduler Feedback Objective Oracle *DY
o Mutator,.: custom trace mutations + case to Corpus e toct caen o g
- A — interesting Objectives if violates a
Security Policy
. Test cases Test case to
 Harness,.: Mapper + Executor + Claims
4 State N
Y
_ . _ 4 Corpus A Objectives \(—
e Obj. Oracle,..: DY security properties . LL[A EL[N || Testcasetoade
Test case Test case
(eg agreement) T ASAN (memory VUInS) N (Trace + Metadata)}/ \ (Trace + Metadata)J//

 Feedback: PUT code-coverage

LibAFL components (we build on)

18/31

Mutate trace

4))
Mutational Stage v

DY mutations

[Mutator J

Action-level Mutations — y

o Skip: remove random action (in/out) tr := out(r, w).tr
in(r, R).tr

 Repeat: randomly copy and insert an action 0 (r, R)

T — T

Term-level Mutations .«

o Swap: Swap two (sub-)terms in the trace

 (GGenerate: Replace a term by a random one

 Replace-Match: Swap two function symbols in the trace (e.g. SHA2 <-> SHAS3)
 Replace-Reuse: Replace a (sub-)term by another (sub-)term in the trace
 Replace-and-Lift: Replace a (sub-)term by one of its sub-terms

19/31

DY Fuzzer components

4 H

Mutate trace l egj;jtri\;en
o State,.: test-cases = DY traces, - _ -
Mutational StageY
seeds corpus = happy flows | Mutatorﬁ Mutated test case Db
-
° SChedUIGF FI FO TScheduled test case o<t Cace
4) v /ith observations
. Scheduler ractive Or
* MUtator’\ CUStom trace mUtat|OnS T Adds tesfizg:ét]gk(:or OAggic:esfc(gs:if
& J |
A if interesting Objectives if violates a
Security Policy
. Test cases Test case to add
 Harness,.: Mapper + Executor + Claims
4 v State
_ . _ 4 Corpus A Objectives
e ODbj. Oracle,.: DY security properties. .. A
(e.g. agreement) + ASAN (memory vulns.) Test case] Test
(Trace + Metadata) (Trace +
\ AN
 Feedback: PUT code-coverage LIbAFL compone

20/31

Objective Oracle
Adds test case to
Objectives if violates a
Security Policy

DY Objective Oracle

Memory-related objective oracle
 Classical with bit-level fuzzing: code instrumentation with AddressSanitizer (ASan)

+

DY Security properties .«

* Introduce claims triggered by roles executing the PUT (part of Harness/Executor)
E.g. agreement claims: Agr(client, pk, m)@i client believes to have agreed with server with pk on m @ ith action

* Classical in DY models: security properties expressed as 1st-order formula
E.g. agreement property vpk,m: Agr(client, pk, m)@i = Run(server, pk, m)@j A j<i

DY Objective oracle also checks DY security properties
* Gather all the claims throughout traces executions at the PUT

 Check all the DY security properties (where terms are concretized into bitstrings)

21/31

tispuffin Implementation

tispuffin: a full-fledge DY fuzzer

 Open-source project written in Rust (16k LoC) (tispuffin on Github)

* Built on LIbAFL, a modular library to build fuzzers (+ new/custom components’,)

* In-memory buffers, delightfully parallel, fast (700 execs/s/core)
 Modular: new protocol and new PUTs can be added

 For TLS: 189 function symbols, harnessed PUTs: OpenSSL, WolfSSL, BoringSSL, LibreSSL

23/31

tispuffin Results

tispuffin findings &

e We selected a small
benchmark suite: recent
logical attacks found on

CVE ID Type New |Version TLS

OpenSsSL (most used) and 2021-3449 Server DoS, M | X | 1.1.1] 1.2
WoltSSL (loT) 2022-25638 Auth. Bypass, P| X | 5.1.0 1.3
- 2022-25640 Auth. Bypass, P| X 5.1.0 1.3

 Found by tlspuffin iIn hours | 2022-38152 Client DoS,M | v | 5.4.0 1.3
or seconds (SKIP), 2022-38153 Server DoS,M | v | 53.0 | 1.2
Systematlc reprOd UC|b|||ty' '2022-39173 Server DoS, M v 55.0 1.3
2022-42905 Info. Leak, M | v | 5.5.0 1.3

on the harnessed PUTs and
found 5 new CVEs
w~Not found by other fuzzers

25/31

Root causes of C\VE-2022-391/73 (WoIfSSL, CVSS high)

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

= Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption
= Flaw 1: actually computes « multiset-intersection » so suitesS will contain duplicates of c (say k times)

26/31

Root causes of C\VE-2022-391/73 (WoIfSSL, CVSS high)

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

= Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption

& Flaw 1: actually Computes « multiset-intersection » so su|tesS will contain dupllcates of c (say k tlmes)

// suitesS initially with offered suites, MAX SZ allocated

How WoIfSSL implements N W|th reﬁneSU|tes(SU|tesC)@tls13 c:4355 l
byte suites[MAX SZ]; 1int suiteSz

0; // supposed to compute suitesS N suitesC

(L = 0; 1 < suitesS.size; 1 += 1) {
(] = 0; J < suitesC.size; J += 1) { // suitesC.size <= MAX SZ '
(sultesS->suiltes[1] == sultesC->suites[]]) {
sultes[suiteSz++] = suitesC->suites([]]; } } }

XMEMCPY (suitesS, &suites, sizeof(suites));

27/31

Root causes of C\VE-2022-391/73 (WoIfSSL, CVSS high)

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

= Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption
= Flaw 1: actually computes « multiset-intersection » so suitesS will contain duplicates of c (say k times)
= No big deal because suitesS initially had no duplicate so: k = n < [suitesC| < MAX_SZ = 150

(c) Is ill-formed and will be rejected but /ate (after call to refineSuites), mess with supportGroupExtension
= Server rejects it and sends a HelloRetryRequest but
= Flaw 2: side-effects of refineSuites are not reverted

= From now on, refineSuites invariant is broken: suitesS contains n duplicates of c

3. Send ClientHello([c;..;c]) again, refineSuites is called again, the resulting buffer suites that contains
k2 = n2 ciphers cis copied into suitesS
= For n = 13, we already overwrite the suitesS buffer allocated on MAX_ciphers_list_length = 150

28/31

Root causes of C\VE-2022-391/73 (WoIfSSL, CVSS high)

An overflow on the stack of max 44700 bytes (controlled by n so is attacker &-controlled).

== Therefore, large portions of the stack can get overwritten, including return addresses (confirmed)
s~ Potential RCE (unconfirmed)
= Potential for negotiating ciphers that server should reject (downgrade)

|
\C) IS I=10rimeu driu Je TEeJeClEU DULTalE ([aIter calr to TETTTESUTIES], MeSS WITN sSUpportGroupeExtension

= Server rejects it and sends a HelloRetryRequest but
1= Flaw 2: side-effects of refineSuites are not reverted

= From now on, refineSuites invariant is broken: suitesS contains n duplicates of c

3. Send ClientHello([c;..;c]) again, refineSuites is called again, the resulting buffer suites that contains
k2 = n2 ciphers cis copied into suitesS
= For n = 13, we already overwrite the suitesS buffer allocated on MAX_ciphers_list_length = 150

29/31

DY Fuzzing Future Work

Future Work - Evaluation

 tispuffin always found the new CVEs

o state-of-the art competitive fuzzers never found any of them
We can explain this with qualitative evidences but quantitative evidences are hard to obtain

. Code coverage IS a poor metnc and prone {0 exhaustlon

A statement reached from an attack state is srmllarly eounted as |f reaehed from the happy flow

E g c//ent accept/ng a leg/t/mate Servers cert/f/cate ~coverage accept/ng /lleg/t/mate cert

= Need for a domain-specific DY-based notion of coverage + balance with code-cowv.

31/31

Future Work (cont.)

Improved objective oracle
- Differential fuzzing: save t as objective when WoltSSL(t) # OpenSSL(t)

* Or extend the oracle: +properties & +compromise scenarios

[WIP] Combine DY fuzzing with bit-level fuzzing (wip): reach « deep states » with DY
attacker and then smash the PUT with some bit-level mutations

Apply DY fuzzing to more protocols (e.g. WPA2, TelCo) and PUTs

Long-Term :
» (Partially) Automate Mapper and Harness — PUT-agnostic DY fuzzer

» Connect further with DY verifiers (ProVerif, Tamarin)

&

.4,
!

32/31

Summary of Contributions

Paper will appear at IEEE S&P 2024

1. A new approach to fuzzing cryptographic
oP J YPIegEr Preprint IACR 2023/057

protocols
CO n n eCt I n g t h e DY fO rm al a p p roaC h W It h fu LL I n g DY Fuzzing: Formal Dolev-Yao Models Meet Protocol Fuzz Testing
— captures for the first time the class of logical | o
attacks / DY attacker et Reserer & i oy Gt i ey Grni
max@maxammann.org lucca.hirschi@inria.fr steve.kremer@inria.fr
2. DY Fuzzing design specification PO damay 18,202 |

3. tlspuffin: full-fledged, modular, efficient DY fuzzer
implementation for TLS Project ANR JCJC

, L — Looking for students/postdocs/engineers
4. Evaluate tlspuffin on TLS libraries:

AAPG2022 | PROTOFUZZ JCJC
o Coordinated by | Lucca Hirschi | 36 months | 280 805€
) (re)fou nd 8 Vu I nerabl I |t|eS Axe E.1 : Fondements du numérique : informatique, automatique, traitement du signal
PROTOFUzz: Cryptographic Protocol
 including 5 new ones (incl. 1 critical & 2 high) Logic Fuzz Testing
Formal Verification Meets Fuzz Testing ﬁ
Consortium: PESTO (Inria Nancy)

e
33/31

