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Formal verification

Computational model
Probabilistic model, n # m means that it's unlikely for n and m to be equal.

High security guarantees (used by cryptographers).
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Manual proofs are complex and tedious. Provers can automate some steps.

ProVerif [Blanchet, 2001]
Tamarin [Meier et al, 2013]
CryptoVerif [Blanchet, 2005]
Squirrel [Baelde et al, 2021]
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Squirrel: an interactive prover



Squirrel is an interactive prover in the computational model,

the user proves goals using tactics.

Its syntax is a higher-order logic based on A-calculus.
Its semantics is based on indexed families of random variables.

The model is probabilistic:
two distinct names have a negligible probability of being equal.



Running example

secret,cpt,H secret,cpt,H
B
m = H({cpt, secret))
cpt == cpt + 1
&
_ A and B share access to a global counter cpt.
ny
if y = H((cpt, secret))
then
cpt = cpt+1
secret
else
cpt = cpt +1
error
— —
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Modelling protocols :

protocols are represented step by step using

an execution trace of a protocol is represented
by a sequence of actions;

actions scheduled to be executed are
represented using the predicate happens.



Traces
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Traces

Examples of traces :

(1) Be(1) A(2) Be(2) A(3)

= = (1) A2) Be(1) Bt(1) A(3)
= (4) A2) A1) Be(8)




Secrecy property
B never receives a hash of the current value of the ~ Syntax:
counter, so the secret is never leaked. higher-order logic where terms are

typed (e.g. messages, index,

forall (j:index),

happens (Bt (j)) =
cond@Bt (j) =
false

timestamps);
timestamps are obtained from

actions;

macros give access to the content

Listing 1: Secrecy property of actions or to mutable states.



Names interpretation

e Names are extracted from random tapes.

e Distinct name symbols come from distinct sections.

e Collisions are possible but unlikely.

size n size n

10



Interpretation

A formula is interpreted according to :

a term structure M

a security parameter 7;

a set of random tapes p which depends on M and 7.
We saw the interpretation of names.

The rest is standard A-calculus assuming some built-in types (booleans, timestamps...)
and functions (quantifiers, equality...)
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Satisfiability and Validity

Satisfiability

A local formula ¢ is satisfiable if the following function is almost always true

n Pr(p: [ol{f =1)

In that case, we note M |= ¢

A local formula ¢ is valid if Ml = ¢ for any M that satisfies cryptographic hypotheses.

In that case, we note = ¢
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Proofs in Squirrel

lemma counterIncrease (t,t':timestamp):
t' <t = cpt@t' ~< cptlt.
Proof.
induction t = t Hind Ht.
assert (t' < pred(t) || t' >= pred(t)) as HO by case t.
case HO.
+ apply Hind in HO = //.
use counterIncreasePred with t; 2: by constraints.
(d@pred(t)) .
+ assert t' = pred(t) as Ceq by constraints.

by apply orderTrans _
use counterIncreasePred with t; 2: auto.
by rewrite Ceq; auto.

Qed.

Listing 2: Proof in Squirrel
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Contributions

Hypotheses
. Goal . FO theory Valid ?
Squirrel » Translation » SMT solver
Protocol and formula
Contributions :
Translation Implementation Evaluation
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Automation using SMT solvers




We want to be sure that the translation never returns Valid when the goal is invalid.
Theorem : Soundness

If the translation of ¢ is SMT-valid, then ¢ is valid in Squirrel.

One model is probabilistic, the other is not — the notion of validity changes.

Ex : n# m valid means that n and m are never equal in SMT.
However in Squirrel they can be equal for a negligible amount of tapes.
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General idea
1. Take an invalid Squirrel formula.

2. Transform a Squirrel interpretation into an SMT interpretation.

3. Show that the SMT formula is invalid.
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Proof overview : general case

Natural translation :

Symbols (functions, variables, macros) — abstract symbols

Types — abstract types
Ex : f(n(i)) # input@A(i) — f (n i) # input (A i)
Squirrel model Ml — SMT interpretation :

We pick a tuple (7, p) that evaluates our formula to 0.
We interpret everything according to (M, 7, p).
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Proof overview : timestamps

Translation :

e Timestamps — integers.
e Happens checks if the integer is in [0,max_ts] (max_ts is an arbitrary constant).
e Equality and the order relation are not natural (they depend on happens).

Squirrel interpretation —» SMT interpretation :

Al8]
undef Bt[0] -1 -1

init  A[l] Bfi] A[2] B2] —> o 1 2 3 4 5

Y » s »
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Implementation




Implementation

Scope covered :

macros and their axioms;
timestamps, their axioms and dependencies;

custom types.
Usage in Squirrel :

relies on Why3 — supported solvers can be used;

callable with smt ~pure ~style ~prover ~slow
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Evaluation




Comparison with an existing tactic

SMT was also compared to an ad-hoc tactic, constraints :

tested on the entire directory of

Squirrel examples;

only pure trace formulas were

translated;

1994 cases where smt concludes

but not constraints

34 cases where constraints

concludes but not smt

Valid | Unknown | Failure
smt 45975 058 8578
constraints | 51933 3578 0
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Case study : running example

lemma counterIncrease (t,t':timestamp):
t' <t = cpt@t' ~< cptlt.
Proof.
induction t = t Hind Ht.
assert (t' < pred(t) || t' >= pred(t)) as HO by case t.
case HO.
+ apply Hind in HO = //.
use counterIncreasePred with t; 2: by constraints.
(d@pred(t)) .
+ assert t' = pred(t) as Ceq by constraints.

by apply orderTrans _
use counterIncreasePred with t; 2: auto.
by rewrite Ceq; auto.

Qed.

Listing 3: Proof without SMT
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Case study : running example

lemma counterIncrease (t,t':timestamp):
t' <t = cpt@t' ~< cptlt.
Proof.

induction t. smt.
Qed.

Listing 4: Proof with SMT

Gains with SMT (in lines of code, without the protocol) :

Toy counter : from 33 lines to 22

Canauth [Van Herrewege et al, 2011] : from 448 lines to 215
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Comparing theories

Evaluation of the tactic on a simple family of lemmas for three different theories.

lemma predpred (t,t':timestamp)
pred(pred. .. (pred(t)))<t'=
(pred(t)=t'||pred(pred(t))=t'I|...|1t<t").

Listing 5: Predecessors
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Comparing theories

— smt_integers
—— smt_abstract
—— smt_abstract_equality

constraints
12 4

i

Execution time

(] 50 100 150 200 250 300 350 400 24
Number of pred



Conclusion




Conclusion and future works

Automated tactic for Squirrel.
Proof of soundness.

Tactic implemented and tested.
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Conclusion and future works

Automated tactic for Squirrel.
Proof of soundness.

Tactic implemented and tested.

Ongoing works
Support more elements (try find, diff, polymorphism).

Reduce the number of smt failures.

Work on completeness.

Conduct bigger case studies.
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Questions?
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