
This work received funding from the France 2030 program managed by the French National Research Agency under grant agreement No. ANR-22-PECY-0006.

Verification of security protocols:

using SMT solvers in the Squirrel prover.

Stanislas Riou

David Baelde

Stéphanie Delaune

4/04/2024

IRISA - SPICY

1

Formal verification

Computational model

• Probabilistic model, n ̸= m means that it’s unlikely for n and m to be equal.

• High security guarantees (used by cryptographers).

Manual proofs are complex and tedious. Provers can automate some steps.

• ProVerif [Blanchet, 2001]

• Tamarin [Meier et al, 2013]

• CryptoVerif [Blanchet, 2005]

• Squirrel [Baelde et al, 2021]

2

Formal verification

Computational model

• Probabilistic model, n ̸= m means that it’s unlikely for n and m to be equal.

• High security guarantees (used by cryptographers).

Manual proofs are complex and tedious. Provers can automate some steps.

• ProVerif [Blanchet, 2001]

• Tamarin [Meier et al, 2013]

• CryptoVerif [Blanchet, 2005]

• Squirrel [Baelde et al, 2021]

2

Outline

1. Squirrel : an interactive prover

2. Automation using SMT solvers

3. Implementation

4. Evaluation

3

Squirrel: an interactive prover

Squirrel

Squirrel is an interactive prover in the computational model,

the user proves goals using tactics.

• Its syntax is a higher-order logic based on λ-calculus.

• Its semantics is based on indexed families of random variables.

• The model is probabilistic:

two distinct names have a negligible probability of being equal.

4

Running example

A

secret,cpt,H

B

secret,cpt,H

m = H(⟨cpt, secret⟩)

cpt := cpt + 1

m

in y

if y = H(⟨cpt, secret⟩)

cpt := cpt + 1

secret

then

cpt := cpt + 1

error

else

A and B share access to a global counter cpt.

Secrecy property

B never receives a hash of the current value of the counter,

so the secret is never leaked.

5

Running example

A

secret,cpt,H

B

secret,cpt,H

m = H(⟨cpt, secret⟩)

cpt := cpt + 1

m

in y

if y = H(⟨cpt, secret⟩)

cpt := cpt + 1

secret

then

cpt := cpt + 1

error

else

A and B share access to a global counter cpt.

Secrecy property

B never receives a hash of the current value of the counter,

so the secret is never leaked.

5

Logic

A

secret,cpt,H

B

secret,cpt,H

m = H(⟨cpt, secret⟩)

cpt := cpt + 1

m

A

in y

if y = H(⟨cpt, secret⟩)

cpt := cpt + 1

secret

then, Bt

cpt := cpt + 1

error

else, Be

Modelling protocols :

• protocols are represented step by step using

actions;

• an execution trace of a protocol is represented

by a sequence of actions;

• actions scheduled to be executed are

represented using the predicate happens.

6

Traces

A

secret,cpt,H

B

secret,cpt,H

m = H(⟨cpt, secret⟩)

cpt := cpt + 1

m

A

in y

if y = H(⟨cpt, secret⟩)

cpt := cpt + 1

secret

then, Bt

cpt := cpt + 1

error

else, Be

Examples of traces :

• A Be A Be A

• A A Be Bt A

• Bt A A Be

7

Traces

A

secret,cpt,H

B

secret,cpt,H

m = H(⟨cpt, secret⟩)

cpt := cpt + 1

m

A

in y

if y = H(⟨cpt, secret⟩)

cpt := cpt + 1

secret

then, Bt

cpt := cpt + 1

error

else, Be

Examples of traces :

• A Be A Be A

• A A Be Bt A

• Bt A A Be

7

Traces

A

secret,cpt,H

B

secret,cpt,H

m = H(⟨cpt, secret⟩)

cpt := cpt + 1

m

A

in y

if y = H(⟨cpt, secret⟩)

cpt := cpt + 1

secret

then, Bt

cpt := cpt + 1

error

else, Be

Examples of traces :

• A Be A Be A

• A A Be Bt A

• Bt A A Be

7

Traces

A

secret,cpt,H

B

secret,cpt,H

m = H(⟨cpt, secret⟩)

cpt := cpt + 1

m

A

in y

if y = H(⟨cpt, secret⟩)

cpt := cpt + 1

secret

then, Bt

cpt := cpt + 1

error

else, Be

Examples of traces :

• A(1) Be(1) A(2) Be(2) A(3)

• A(1) A(2) Be(1) Bt(1) A(3)

• Bt(4) A(2) A(1) Be(8)

8

Logic

Secrecy property

B never receives a hash of the current value of the

counter, so the secret is never leaked.

forall (j:index),

happens(Bt(j)) ⇒
cond@Bt(j) ⇒
false

Listing 1: Secrecy property

Syntax :

• higher-order logic where terms are

typed (e.g. messages, index,

timestamps);

• timestamps are obtained from

actions;

• macros give access to the content

of actions or to mutable states.

9

Names interpretation

• Names are extracted from random tapes.

• Distinct name symbols come from distinct sections.

• Collisions are possible but unlikely.

10

Interpretation

A formula is interpreted according to :

• a term structure M;

• a security parameter η;

• a set of random tapes ρ which depends on M and η.

We saw the interpretation of names.

The rest is standard λ-calculus assuming some built-in types (booleans, timestamps...)

and functions (quantifiers, equality...)

11

Satisfiability and Validity

Satisfiability

A local formula ϕ is satisfiable if the following function is almost always true

η 7→ Pr(ρ : JϕKη,ρM = 1)

In that case, we note M |= ϕ

Validity

A local formula ϕ is valid if M |= ϕ for any M that satisfies cryptographic hypotheses.

In that case, we note |= ϕ

12

Proofs in Squirrel

lemma counterIncrease (t,t':timestamp):
t' < t ⇒ cpt@t' ∼< cpt@t.

Proof.

induction t ⇒ t Hind Ht.

assert (t' < pred(t) || t' >= pred(t)) as H0 by case t.

case H0.

+ apply Hind in H0 ⇒ //.

use counterIncreasePred with t; 2: by constraints.

by apply orderTrans _ (d@pred(t)).

+ assert t' = pred(t) as Ceq by constraints.

use counterIncreasePred with t; 2: auto.

by rewrite Ceq; auto.

Qed.

Listing 2: Proof in Squirrel
13

Contributions

Contributions :

• Translation • Implementation • Evaluation

14

Automation using SMT solvers

Soundness

We want to be sure that the translation never returns Valid when the goal is invalid.

Theorem : Soundness

If the translation of ϕ is SMT-valid, then ϕ is valid in Squirrel.

One model is probabilistic, the other is not −→ the notion of validity changes.

Ex : n ̸= m valid means that n and m are never equal in SMT.

However in Squirrel they can be equal for a negligible amount of tapes.

15

Soundness

General idea

1. Take an invalid Squirrel formula.

2. Transform a Squirrel interpretation into an SMT interpretation.

3. Show that the SMT formula is invalid.

16

Proof overview : general case

Natural translation :

• Symbols (functions, variables, macros) −→ abstract symbols

• Types −→ abstract types

Ex : f (n(i)) ̸= input@A(i) −→ f (n i) ̸= input (A i)

Squirrel model M −→ SMT interpretation :

• We pick a tuple (η, ρ) that evaluates our formula to 0.

• We interpret everything according to (M, η, ρ).

17

Proof overview : timestamps

Translation :

• Timestamps −→ integers.

• Happens checks if the integer is in [0,max ts] (max ts is an arbitrary constant).

• Equality and the order relation are not natural (they depend on happens).

Squirrel interpretation −→ SMT interpretation :

18

Implementation

Implementation

Scope covered :

• macros and their axioms;

• timestamps, their axioms and dependencies;

• custom types.

Usage in Squirrel :

• relies on Why3 −→ supported solvers can be used;

• callable with smt ∼pure ∼style ∼prover ∼slow

19

Evaluation

Comparison with an existing tactic

SMT was also compared to an ad-hoc tactic, constraints :

• tested on the entire directory of

Squirrel examples;

• only pure trace formulas were

translated;

• 1994 cases where smt concludes

but not constraints

• 34 cases where constraints

concludes but not smt

Valid Unknown Failure

smt 45975 958 8578

constraints 51933 3578 0

20

Case study : running example

lemma counterIncrease (t,t':timestamp):
t' < t ⇒ cpt@t' ∼< cpt@t.

Proof.

induction t ⇒ t Hind Ht.

assert (t' < pred(t) || t' >= pred(t)) as H0 by case t.

case H0.

+ apply Hind in H0 ⇒ //.

use counterIncreasePred with t; 2: by constraints.

by apply orderTrans _ (d@pred(t)).

+ assert t' = pred(t) as Ceq by constraints.

use counterIncreasePred with t; 2: auto.

by rewrite Ceq; auto.

Qed.

Listing 3: Proof without SMT
21

Case study : running example

lemma counterIncrease (t,t':timestamp):
t' < t ⇒ cpt@t' ∼< cpt@t.

Proof.

induction t. smt.

Qed.

Listing 4: Proof with SMT

Gains with SMT (in lines of code, without the protocol) :

• Toy counter : from 33 lines to 22

• Canauth [Van Herrewege et al, 2011] : from 448 lines to 215

22

Comparing theories

Evaluation of the tactic on a simple family of lemmas for three different theories.

lemma predpred (t,t':timestamp) :

pred(pred...(pred(t)))≤t'⇒
(pred(t)=t'||pred(pred(t))=t'||...||t≤t').

Listing 5: Predecessors

23

Comparing theories

24

Conclusion

Conclusion and future works

• Automated tactic for Squirrel.

• Proof of soundness.

• Tactic implemented and tested.

Ongoing works

• Support more elements (try find, diff, polymorphism).

• Reduce the number of smt failures.

Future works

• Work on completeness.

• Conduct bigger case studies.

25

Conclusion and future works

• Automated tactic for Squirrel.

• Proof of soundness.

• Tactic implemented and tested.

Ongoing works

• Support more elements (try find, diff, polymorphism).

• Reduce the number of smt failures.

Future works

• Work on completeness.

• Conduct bigger case studies.

25

Questions?

26

	Squirrel: an interactive prover
	Automation using SMT solvers
	Implementation
	Evaluation
	Conclusion

