Verification of security protocols:
using SMT solvers in the Squirrel prover.

Stanislas Riou
David Baelde
Stéphanie Delaune
4/04/2024
IRISA - SPICY

This work received funding from the France 2030 program managed by the French National Research Agency under grant agreement No. ANR-22-PECY-0006.
Formal verification

Computational model

- Probabilistic model, \(n \neq m \) means that it’s unlikely for \(n \) and \(m \) to be equal.
- High security guarantees (used by cryptographers).
Formal verification

<table>
<thead>
<tr>
<th>Computational model</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Probabilistic model, $n \neq m$ means that it’s unlikely for n and m to be equal.</td>
</tr>
<tr>
<td>● High security guarantees (used by cryptographers).</td>
</tr>
</tbody>
</table>

Manual proofs are complex and tedious. Provers can automate some steps.

- ProVerif [Blanchet, 2001]
- Tamarin [Meier et al, 2013]
- CryptoVerif [Blanchet, 2005]
- Squirrel [Baelde et al, 2021]
Outline

1. Squirrel: an interactive prover
2. Automation using SMT solvers
3. Implementation
4. Evaluation
Squirrel: an interactive prover
Squirrel is an interactive prover in the computational model, the user proves goals using \textit{tactics}.

- Its syntax is a higher-order logic based on λ-calculus.
- Its semantics is based on indexed families of random variables.
- The model is probabilistic:
 two distinct names have a negligible probability of being equal.
A and B share access to a global counter \(\text{cpt} \).

Secrecy property:

B never receives a hash of the current value of the counter, so the secret is never leaked.
A and B share access to a global counter \(\text{cpt} \).

Secrecy property

B never receives a hash of the current value of the counter, so the secret is never leaked.
Modelling protocols:

- protocols are represented step by step using actions;
- an execution trace of a protocol is represented by a sequence of actions;
- actions scheduled to be executed are represented using the predicate `happens`.
Traces

Examples of traces :

- A Be A Be A
Traces

Examples of traces:
- A Be A Be A
- A A Be Bt A
Examples of traces:

- A Be A Be A
- A A Be Bt A
- Bt A A Be
Examples of traces:

- $A(1) \; Be(1) \; A(2) \; Be(2) \; A(3)$
- $A(1) \; A(2) \; Be(1) \; Bt(1) \; A(3)$
- $Bt(4) \; A(2) \; A(1) \; Be(8)$
Secrecy property

B never receives a hash of the current value of the counter, so the secret is never leaked.

```
forall (j: index),
  happens(Bt(j)) ⇒
  cond@Bt(j) ⇒
  false
```

Listing 1: Secrecy property

Syntax:

- higher-order logic where terms are typed (e.g. messages, index, timestamps);
- timestamps are obtained from actions;
- macros give access to the content of actions or to mutable states.
Names interpretation

- Names are extracted from random tapes.
- Distinct name symbols come from distinct sections.
- Collisions are possible but unlikely.
A formula is interpreted according to:

- a term structure M;
- a security parameter η;
- a set of random tapes ρ which depends on M and η.

We saw the interpretation of names.

The rest is standard λ-calculus assuming some built-in types (booleans, timestamps...) and functions (quantifiers, equality...)
Satisfiability

A *local* formula ϕ is satisfiable if the following function is almost always true

$$\eta \mapsto \Pr(\rho : \llbracket \phi \rrbracket_M^{\eta,\rho} = 1)$$

In that case, we note $\mathbb{M} \models \phi$

Validity

A *local* formula ϕ is valid if $\mathbb{M} \models \phi$ for any \mathbb{M} that satisfies cryptographic hypotheses.

In that case, we note $\models \phi$
lemma counterIncrease (t,t':timestamp):
 t' < t ⇒ cpt@t' ~< cpt@t.

Proof.

induction t ⇒ t Hind Ht.
assert (t' < pred(t) || t' >= pred(t)) as H0 by case t.

case H0.
 + apply Hind in H0 ⇒ //.
 use counterIncreasePred with t; 2: by constraints.
 by apply orderTrans _ (d@pred(t)).
 + assert t' = pred(t) as Ceq by constraints.
 use counterIncreasePred with t; 2: auto.
 by rewrite Ceq; auto.

Qed.
Contributions:

- Translation
- Implementation
- Evaluation
Automation using SMT solvers
We want to be sure that the translation never returns Valid when the goal is invalid.

Theorem: Soundness

If the translation of ϕ is SMT-valid, then ϕ is valid in Squirrel.

One model is probabilistic, the other is not \(\rightarrow\) the notion of validity changes.

Ex: \(n \neq m\) valid means that \(n\) and \(m\) are never equal in SMT.
However in Squirrel they can be equal for a negligible amount of tapes.
Soundness

General idea

1. Take an invalid Squirrel formula.
2. Transform a Squirrel interpretation into an SMT interpretation.
3. Show that the SMT formula is invalid.
Natural translation:

- Symbols (functions, variables, macros) \rightarrow abstract symbols
- Types \rightarrow abstract types

Ex: \(f(n(i)) \neq \text{input}@A(i) \rightarrow f(n\ i) \neq \text{input (A i)} \)

Squirrel model \(\mathbb{M} \rightarrow \text{SMT interpretation:} \)

- We pick a tuple \((\eta, \rho)\) that evaluates our formula to 0.
- We interpret everything according to \((\mathbb{M}, \eta, \rho)\).
Proof overview: timestamps

Translation:

- Timestamps \rightarrow integers.
- Happens checks if the integer is in $[0, \text{max}_\text{ts}]$ (max_ts is an arbitrary constant).
- Equality and the order relation are not natural (they depend on happens).

Squirrel interpretation \rightarrow SMT interpretation:
Implementation
Scope covered:

- macros and their axioms;
- timestamps, their axioms and dependencies;
- custom types.

Usage in Squirrel:

- relies on Why3 \rightarrow supported solvers can be used;
- callable with smt \simpure \simstyle \simprover \simslow
Evaluation
Comparison with an existing tactic

SMT was also compared to an ad-hoc tactic, constraints:

- tested on the entire directory of Squirrel examples;
- only pure trace formulas were translated;
- 1994 cases where smt concludes but not constraints
- 34 cases where constraints concludes but not smt

<table>
<thead>
<tr>
<th></th>
<th>Valid</th>
<th>Unknown</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>smt</td>
<td>45975</td>
<td>958</td>
<td>8578</td>
</tr>
<tr>
<td>constraints</td>
<td>51933</td>
<td>3578</td>
<td>0</td>
</tr>
</tbody>
</table>
Case study: running example

lemma counterIncrease (t,t':timestamp):
 t' < t ⇒ cpt@t' ≼ cpt@t.

Proof.
 induction t ⇒ t Hind Ht.
 assert (t' < pred(t) || t' >= pred(t)) as H0 by case t.
 case H0.
 + apply Hind in H0 ⇒ //.
 use counterIncreasePred with t; 2: by constraints.
 by apply orderTrans _ (d@pred(t)).
 + assert t' = pred(t) as Ceq by constraints.
 use counterIncreasePred with t; 2: auto.
 by rewrite Ceq; auto.

Qed.

Listing 3: Proof without SMT
lemma counterIncrease (t, t': timestamp):
 t' < t => cpt@t' ~< cpt@t.

Proof.
 induction t. smt.
Qed.

Listing 4: Proof with SMT

Gains with SMT (in lines of code, without the protocol):

- Toy counter: from 33 lines to 22
- Canauth [Van Herreweghe et al, 2011]: from 448 lines to 215
Comparing theories

Evaluation of the tactic on a simple family of lemmas for three different theories.

```lean
lemma predpred (t,t':timestamp) :
pred(pred...(pred(t))) ≤ t' ⇒
    (pred(t)=t'||pred(pred(t))=t'||...||t≤t')
```

Listing 5: Predecessors
Comparing theories
Conclusion
Conclusions and future works

- Automated tactic for Squirrel.
- Proof of soundness.
- Tactic implemented and tested.

Ongoing works

- Support more elements (try find, diff, polymorphism).
- Reduce the number of smt failures.

Future works

- Work on completeness.
- Conduct bigger case studies.
Conclusion and future works

- Automated tactic for Squirrel.
- Proof of soundness.
- Tactic implemented and tested.

Ongoing works

- Support more elements (try find, diff, polymorphism).
- Reduce the number of smt failures.

Future works

- Work on completeness.
- Conduct bigger case studies.
Questions?