
Election Verifiability with ProVerif

Vincent Cheval, Véronique Cortier, Alexandre Debant

GT-MFS, Oléron, March, 5th 2024

presented at CSF’23

1/17



Two main families for electronic voting

Voting machines

▶ Voters attend a polling station;
▶ Standard authentication (id cards, etc.)

Internet Voting

▶ Voters vote from home;
▶ Using their own computer

(or phone, tablet, ...)

2/17



Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

3/17



Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

3/17



Confidentiality of the votes

Vote privacy
"No one should know how I voted"

Better: Receipt-free / Coercion-resistant
"No one should know how I voted,
even if I am willing to tell my vote! "

▶ vote buying
▶ coercion

Everlasting privacy: no one should know my vote, even when the
cryptographic keys will be eventually broken.

3/17



Verifiability
Individual Verifiability: a voter can check that

▶ cast as intended: their ballot contains their intended vote
▶ recorded as cast: their ballot is in the ballot box.

Universal Verifiability: everyone can check that

▶ tallied as recorded: the result corresponds to the ballot box.
▶ eligibility: ballots have been casted by legitimate voters.

You should verify the election,
not the system.

4/17



Voting protocol - overview

[slide borrowed from Alexandre Debant.]

5/17



End2End verifiability

votes from
voters who

verify

votes from

voters who
do not
verify

votes from
dishonest

votersresult =

Hard to verify for tools
→ check subproperties instead

Theorem ([Cortier et al CSF’19, Baloglu et al CSF’21])
eligibility + cast-as-intended + recorded-as-cast + tallied-as-recorded

+ no clash ⇒ E2E Verifibility

sufficient (but not tight) conditions

6/17



End2End verifiability

votes from
voters who

verify

votes from

voters who
do not
verify

votes from
dishonest

votersresult =

Hard to verify for tools
→ check subproperties instead

Theorem ([Cortier et al CSF’19, Baloglu et al CSF’21])
eligibility + cast-as-intended + recorded-as-cast + tallied-as-recorded

+ no clash ⇒ E2E Verifibility

sufficient (but not tight) conditions

6/17



End2End verifiability

votes from
voters who

verify

votes from

voters who
do not
verify

votes from
dishonest

votersresult =

Hard to verify for tools
→ check subproperties instead

Theorem ([Cortier et al CSF’19, Baloglu et al CSF’21])
eligibility + cast-as-intended + recorded-as-cast + tallied-as-recorded

+ no clash ⇒ E2E Verifibility

sufficient (but not tight) conditions
6/17



Goal: verifiability in ProVerif

Protocol

Property

yes
attack
cannot be proved
time out

▶ Works on most of existing protocols in the literature
▶ Is also used on industrial protocols (e.g. TLS, Signal, ...)
▶ used to pass Swiss requirements on voting

▶ Neuchâtel/Scytl protocol [C., Galindo, Turuani 2018]
▶ CHVote protocol [Bernhard, C., Gaudry, Turuani, Warinschi

2019]

7/17



ProVerif: protocols

The grammar of processes is as follows:

P, Q, R :=
0
if M1 = M2 then P else Q
let x = M in P
in(c, x); P
out(c, N); P
new n; P
P | Q
!P
eventE ; P

8/17



ProVerif: properties

ei , ej : events

simplified fragment: ∧ ∨ ei =⇒ ∧ ∨ e′
j

Example 1: Paid(Alice, x) ⇒ Received(Bob, x)

Example 2: injective events

inj−A(x) ⇒ inj−B(x)

✓ tr1 : B(0).B(0).A(0).A(0)
✗ tr2 : B(0).A(0).A(0)

9/17



ProVerif: properties

ei , ej : events

simplified fragment: ∧ ∨ ei =⇒ ∧ ∨ e′
j

Example 1: Paid(Alice, x) ⇒ Received(Bob, x)

Example 2: injective events

inj−A(x) ⇒ inj−B(x)

✓ tr1 : B(0).B(0).A(0).A(0)
✗ tr2 : B(0).A(0).A(0)

9/17



Voting protocol - overview

[slide borrowed from Alexandre Debant.]

10/17



First contribution: exact characterization
Theorem

E2E-verifiability ⇔ query1 and query2

query1 finish ∧ inj−verified(z , x) ⇒ inj−counted(x)

Intuition: individual verifability

query2 finish ∧ inj−counted(x) ⇒ inj−hv(z) ∧ verified(z , x)
∨ inj−hnv(z) ∧ voted(z , x)
∨ inj−corrupt(z)

Intuition: extended universal verifiability

Issue: make sure finish is executed only once all ballots are counted

11/17



First contribution: exact characterization
Theorem

E2E-verifiability ⇔ query1 and query2

query1 finish ∧ inj−verified(z , x) ⇒ inj−counted(x)

Intuition: individual verifability

query2 finish ∧ inj−counted(x) ⇒ inj−hv(z) ∧ verified(z , x)
∨ inj−hnv(z) ∧ voted(z , x)
∨ inj−corrupt(z)

Intuition: extended universal verifiability

Issue: make sure finish is executed only once all ballots are counted

11/17



First contribution: exact characterization
Theorem

E2E-verifiability ⇔ query1 and query2

query1 finish ∧ inj−verified(z , x) ⇒ inj−counted(x)

Intuition: individual verifability

query2 finish ∧ inj−counted(x) ⇒ inj−hv(z) ∧ verified(z , x)
∨ inj−hnv(z) ∧ voted(z , x)
∨ inj−corrupt(z)

Intuition: extended universal verifiability

Issue: make sure finish is executed only once all ballots are counted

11/17



Second contribution: make it work in ProVerif

Protocol

Property

yes
attack
cannot be proved
time out

Framework for e-voting protocols
▶ 12 protocol specific processes
▶ 8 generic processes

Library for verifiability

▶ GSVerif-like axioms [CSF’18]
▶ 8 well-crafted lemmas

12/17



Generic processes
1 let Tally(e_id) =
2 in(cell_tally(e_id),i);
3 event Tally_Read(e_id,i)
4 if i = 0 then event finish(e_id)
5 else
6 get public_identifier_id(=e_id,=i,ident) in
7 in(cell_tally_last_vote(e_id,ident),x);
8 if x = empty_ballot then out(cell_tally(e_id),i-1)
9 else

10 Decrypt_Ballot(e_id,i,ident,x) |
11 in(res_decrypt(e_id,i),v);
12 event Counted(e_id,v);
13 event CountedExtended(e_id,v,i,ident);
14 out(c_pub,v); out(cell_tally(e_id),i-1).

1 let Voter(e_id) =
2 in(c_pub,v);
3 if is_valid(v) then
4 get voting_data(e_id,v_idx,v_data) in
5 in(cell_voter(e_id,v_idx),nb_vote);
6 Voting(e_id,v_idx,nb_vote+1,v,v_data) |
7 in(res_voting(e_id,v_idx),res_data);
8 in(c_pub, is_last);
9 if is_last then

10 Final_Check(e_id,v_idx,v,v_data,res_data,nb_vote+1)
11 else
12 out(cell_voter(e_id,v_index),nb_vote+1).

13/17



Protocol specific processes

1 let Voting(e_id,v_idx,nb_vote,v,voting_data) =
2 get election_key(=e_id,_,pkE) in
3 let (pseudo,c_auth) = voting_data in
4 new r_ctxt;
5 let ctxt = aenc(pkE,v,r_ctxt) in
6 event voted(e_id,v_idx,v);
7 let b = (pseudo,ctxt) in
8 out(c_pub, b); out(c_auth, b);
9

10 out(res_voting(e_id,v_idx,nb_vote),b).

14/17



A library for verifability

Axioms (correction guaranteed!)

▶ counter intervals
▶ term freshness

Generic lemmas

▶ to help with termination
▶ proved each time in ProVerif
▶ some using induction

15/17



Voter Registrar Server E2E
(setup) (1 CCR/M) Verifiability

Helios (toy ex.) – ✓ 16s

Belenios tally ✓ 24s

Belenios last ✗ 5s

Belenios-counter last ✗ 8s

Belenios-hash last ✓ 62s

Swiss Post ✓ 58s

CHVote ✓ 17s

in bold: we used existing ProVerif files
16/17



Conclusion

▶ Tally phase finally modeled!
▶ rather “plug and play” for existing ProVerif files
▶ make use of recent features of ProVerif (counters, lemmas, ...)

Future work

▶ extend to vote privacy
▶ could it apply to other tools such as Tamarin?

17/17


