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Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

→

←CRASH

Key idea: attackers do not know where things are stored.
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Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).

▶ Attacks to KASLR based on:

side-channels, speculative
execution.

Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution?

Yes.

▶ Is it effective against side-channels and speculative execution?

Not really...

▶ Can we do something else?

Yes.
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Kernel’s Execution Model

▶ Privilege level: user or kernel

▶ Syscalls change privilege level
▶ Disjoint address spaces
▶ Attacker: user-space program.

Privilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←
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Kernel Safety (no side-channels and speculative execution)

For every collection of system calls γ:

KASLR ∧ LNI(γ)⇒ probabilistic safety

LNI(γ) := the semantics of the syscalls in γ must not de-
pend on the layout

Victim

return p (p array pointer)

LNI

no
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KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
∗0xf1a34 = x; data op 0xf1a34
x = ∗0xf1a34; data op 0xf1a34
(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:
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KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

void s (x, y){
if(x)

(∗y)(x);
}
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KASLR with Speculative Attackers and Side-Channels

SLNI(γ)⇒ safety

Victim

p[0] = 42 (p array pointer)
f() (f procedure)

SLNI

no
no
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Kernel Safety ⇒ Speculative Kernel Safety (1/3)

γ is safe against ordinary attackers

γ is safe against speculative attackers
⇓

⇑?̸⇑

But maybe there is an instrumentation ζ such that:

γ is safe against ordinary attackers

ζ(γ) is safe against speculative attackers
⇓
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Kernel Safety ⇒ Speculative Kernel Safety (2/3)

Theorem
If ζ:

▶ preserves the semantics of the syscalls,
▶ prevents the transient execution of unsafe commands,

and γ is safe against ordinary attackers, then ζ(γ) is safe against
speculative attackers.
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Kernel Safety ⇒ Speculative Kernel Safety (3/3)

Does such transformation exist?

Yes.

ζ(if(E) {C} else {D}) ≜ if(E) {ζ(C)} else {ζ(D)}
ζ(while(E) {C}) ≜ while(E) {ζ(C)}

ζ(∗E = F) ≜ lfence; ∗E = F

ζ(E = ∗F) ≜ lfence; E = ∗F
ζ((∗E)(F1, . . . , Fk)) ≜ lfence; (∗E)(F1, . . . , Fk)
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ζ(while(E) {C}) ≜ while(E) {ζ(C)}
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Conclusions

▶ Layout Randomization protects the kernel against ordinary
attacks in presence of LNI,

but not against the speculative
ones.

▶ If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

▶ Model indirect branch speculation.
▶ Evaluate the overhead of our instrumentation in practice.
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