
1/ 12

On Kernel Safety and Speculative Execution
Work in progress

Davide Davoli12 Tamara Rezk 2 Martin Avanzini2

1Université Côte d’Azur

2INRIA

3rd April 2024 – Annual Meeting of the WG “Formal Methods
in Security”

2/ 12

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

→

←CRASH

Key idea: attackers do not know where things are stored.

2/ 12

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory

Randomized Memory

→

←CRASH

Key idea: attackers do not know where things are stored.

2/ 12

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

→

←CRASH

Key idea: attackers do not know where things are stored.

2/ 12

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

→

←CRASH

Key idea: attackers do not know where things are stored.

2/ 12

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

→

←CRASH

Key idea: attackers do not know where things are stored.

2/ 12

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

→

←CRASH

Key idea: attackers do not know where things are stored.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).

▶ Attacks to KASLR based on:

side-channels, speculative
execution.

Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution?

Yes.

▶ Is it effective against side-channels and speculative execution?

Not really...

▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on:

side-channels, speculative
execution.

Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution?

Yes.

▶ Is it effective against side-channels and speculative execution?

Not really...

▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on: side-channels

, speculative
execution.

Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution?

Yes.

▶ Is it effective against side-channels and speculative execution?

Not really...

▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on: side-channels, speculative

execution.

Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution?

Yes.

▶ Is it effective against side-channels and speculative execution?

Not really...

▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on: side-channels, speculative

execution.
Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution?

Yes.
▶ Is it effective against side-channels and speculative execution?

Not really...

▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on: side-channels, speculative

execution.
Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution? Yes.

▶ Is it effective against side-channels and speculative execution?

Not really...

▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on: side-channels, speculative

execution.
Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution? Yes.
▶ Is it effective against side-channels and speculative execution?

Not really...
▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on: side-channels, speculative

execution.
Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution? Yes.
▶ Is it effective against side-channels and speculative execution?

Not really...

▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on: side-channels, speculative

execution.
Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution? Yes.
▶ Is it effective against side-channels and speculative execution?

Not really...
▶ Can we do something else?

Yes.

3/ 12

Open Problems, Research Questions and Contributions

Open Problems:
▶ No formal study of Layout Randomization for kernel memory

(KASLR).
▶ Attacks to KASLR based on: side-channels, speculative

execution.
Research questions and contributions:
▶ Is KASLR effective without side-channels and speculative

execution? Yes.
▶ Is it effective against side-channels and speculative execution?

Not really...
▶ Can we do something else? Yes.

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel

▶ Syscalls change privilege level
▶ Disjoint address spaces
▶ Attacker: user-space program.

Privilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level

▶ Disjoint address spaces
▶ Attacker: user-space program.

Privilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces

▶ Attacker: user-space program.

Privilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces

▶ Attacker: user-space program.

Privilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces

▶ Attacker: user-space program.

uPrivilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces

▶ Attacker: user-space program.

kPrivilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces
▶ Attacker: user-space program.

uPrivilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces
▶ Attacker: user-space program.

void A (void){
x = get uid(); //syscall

y = f(x); //ordinary call

y = y + z;
print(y); //syscall

}

uPrivilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces
▶ Attacker: user-space program.

void A (void){
x = get uid(); //syscall

y = f(x); //ordinary call

y = y + z;
print(y); //syscall

}

uPrivilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces
▶ Attacker: user-space program.

void A (void){

x = get uid() //syscall

y = f(x) //ordinary call

y = y + z

print(y) //syscall

}

kPrivilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces
▶ Attacker: user-space program.

void A (void){

x = get uid() //syscall

y = f(x) //ordinary call

y = y + z

print(y) //syscall

}

kPrivilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

4/ 12

Kernel’s Execution Model

▶ Privilege level: user or kernel
▶ Syscalls change privilege level
▶ Disjoint address spaces
▶ Attacker: user-space program.

void A (void){

x = get uid() //syscall

y = f(x) //ordinary call

y = y + z

print(y) //syscall

}

kPrivilege level:

User’s Address Space

Safety Violation

Kernel’s Address
Space (randomized)

x :

y :

z :

f :

←

←

5/ 12

Kernel Safety (no side-channels and speculative execution)

For every collection of system calls γ:

KASLR ∧ LNI(γ)⇒ probabilistic safety

LNI(γ) := the semantics of the syscalls in γ must not de-
pend on the layout

Victim

return p (p array pointer)

LNI

no

5/ 12

Kernel Safety (no side-channels and speculative execution)

For every collection of system calls γ:

KASLR ∧ LNI(γ)⇒ probabilistic safety

LNI(γ) := the semantics of the syscalls in γ must not de-
pend on the layout

Victim

return p (p array pointer)

LNI

no

5/ 12

Kernel Safety (no side-channels and speculative execution)

For every collection of system calls γ:

KASLR ∧ LNI(γ)⇒ probabilistic safety

LNI(γ) := the semantics of the syscalls in γ must not de-
pend on the layout

Victim
return p (p array pointer)

LNI
no

6/ 12

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
∗0xf1a34 = x; data op 0xf1a34
x = ∗0xf1a34; data op 0xf1a34
(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

6/ 12

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information

∗0xf1a34 = x; data op 0xf1a34
x = ∗0xf1a34; data op 0xf1a34
(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

6/ 12

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
∗0xf1a34 = x; data op 0xf1a34

x = ∗0xf1a34; data op 0xf1a34
(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

6/ 12

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
∗0xf1a34 = x; data op 0xf1a34
x = ∗0xf1a34; data op 0xf1a34

(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

6/ 12

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
∗0xf1a34 = x; data op 0xf1a34
x = ∗0xf1a34; data op 0xf1a34
(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

6/ 12

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
∗0xf1a34 = x; data op 0xf1a34
x = ∗0xf1a34; data op 0xf1a34
(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

6/ 12

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
∗0xf1a34 = x; data op 0xf1a34
x = ∗0xf1a34; data op 0xf1a34
(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

LNI(γ) := the semantics of the syscalls in γ must not de-
pend on the layout

6/ 12

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
∗0xf1a34 = x; data op 0xf1a34
x = ∗0xf1a34; data op 0xf1a34
(∗0xf1a34)(); jump 0xf1a34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

LNI(γ) := the semantics and the side-channel leaks of the
syscalls in γ must not depend on the layout

7/ 12

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

void s (x, y){
if(x)

(∗y)(x);
}

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→

→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→

→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→

99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→

99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→

→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→

→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→

99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

LNI(γ) := the semantics the side channel leaks of the
syscalls in γ must not depend on the layout

7/ 12

KASLR in presence of Speculative Attackers
The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

→
→

→
99K

→

for(i = 0; i < 8; i + +){
force(true);
s(false, i);
}
void s (x, y){

if(x)
(∗y)(x);

}

λx

0:
1:
2:
3:
4:
5:
6:
7:

Randomized Kernel Memory

←

←

SLNI(γ) :=
the speculative semantics and the side channel
leaks of the syscalls in γ must not depend on the
layout

8/ 12

KASLR with Speculative Attackers and Side-Channels

SLNI(γ)⇒ safety

Victim

p[0] = 42 (p array pointer)
f() (f procedure)

SLNI

no
no

8/ 12

KASLR with Speculative Attackers and Side-Channels

SLNI(γ)⇒ safety
⇓

KASLR ∧ SLNI(γ)⇒ probabilistic safety

Victim

p[0] = 42 (p array pointer)
f() (f procedure)

SLNI

no
no

8/ 12

KASLR with Speculative Attackers and Side-Channels

SLNI(γ)⇒ safety
⇓

KASLR ∧ SLNI(γ)⇒ probabilistic safety

Victim

p[0] = 42 (p array pointer)
f() (f procedure)

SLNI

no
no

8/ 12

KASLR with Speculative Attackers and Side-Channels

SLNI(γ)⇒ safety
⇓

KASLR ∧ SLNI(γ)⇒ probabilistic safety

Victim
p[0] = 42 (p array pointer)

f() (f procedure)

SLNI
no

no

8/ 12

KASLR with Speculative Attackers and Side-Channels

SLNI(γ)⇒ safety
⇓

KASLR ∧ SLNI(γ)⇒ probabilistic safety

Victim
p[0] = 42 (p array pointer)
f() (f procedure)

SLNI
no
no

9/ 12

Kernel Safety ⇒ Speculative Kernel Safety (1/3)

γ is safe against ordinary attackers

γ is safe against speculative attackers
⇓

⇑?̸⇑

But maybe there is an instrumentation ζ such that:

γ is safe against ordinary attackers

ζ(γ) is safe against speculative attackers
⇓

9/ 12

Kernel Safety ⇒ Speculative Kernel Safety (1/3)

γ is safe against ordinary attackers

γ is safe against speculative attackers

⇓

⇑?

̸⇑

But maybe there is an instrumentation ζ such that:

γ is safe against ordinary attackers

ζ(γ) is safe against speculative attackers
⇓

9/ 12

Kernel Safety ⇒ Speculative Kernel Safety (1/3)

γ is safe against ordinary attackers

γ is safe against speculative attackers

⇓⇑?

̸⇑

But maybe there is an instrumentation ζ such that:

γ is safe against ordinary attackers

ζ(γ) is safe against speculative attackers
⇓

9/ 12

Kernel Safety ⇒ Speculative Kernel Safety (1/3)

γ is safe against ordinary attackers

γ is safe against speculative attackers

⇓⇑?

̸⇑

But maybe there is an instrumentation ζ such that:

γ is safe against ordinary attackers

ζ(γ) is safe against speculative attackers
⇓

10/ 12

Kernel Safety ⇒ Speculative Kernel Safety (2/3)

Theorem
If ζ:

▶ preserves the semantics of the syscalls,
▶ prevents the transient execution of unsafe commands,

and γ is safe against ordinary attackers, then ζ(γ) is safe against
speculative attackers.

10/ 12

Kernel Safety ⇒ Speculative Kernel Safety (2/3)

Theorem
If ζ:
▶ preserves the semantics of the syscalls,

▶ prevents the transient execution of unsafe commands,
and γ is safe against ordinary attackers, then ζ(γ) is safe against
speculative attackers.

10/ 12

Kernel Safety ⇒ Speculative Kernel Safety (2/3)

Theorem
If ζ:
▶ preserves the semantics of the syscalls,
▶ prevents the transient execution of unsafe commands,

and γ is safe against ordinary attackers, then ζ(γ) is safe against
speculative attackers.

10/ 12

Kernel Safety ⇒ Speculative Kernel Safety (2/3)

Theorem
If ζ:
▶ preserves the semantics of the syscalls,
▶ prevents the transient execution of unsafe commands,

and γ is safe against ordinary attackers, then ζ(γ) is safe against
speculative attackers.

11/ 12

Kernel Safety ⇒ Speculative Kernel Safety (3/3)

Does such transformation exist?

Yes.

ζ(if(E) {C} else {D}) ≜ if(E) {ζ(C)} else {ζ(D)}
ζ(while(E) {C}) ≜ while(E) {ζ(C)}

ζ(∗E = F) ≜ lfence; ∗E = F

ζ(E = ∗F) ≜ lfence; E = ∗F
ζ((∗E)(F1, . . . , Fk)) ≜ lfence; (∗E)(F1, . . . , Fk)

11/ 12

Kernel Safety ⇒ Speculative Kernel Safety (3/3)

Does such transformation exist? Yes.

ζ(if(E) {C} else {D}) ≜ if(E) {ζ(C)} else {ζ(D)}
ζ(while(E) {C}) ≜ while(E) {ζ(C)}

ζ(∗E = F) ≜ lfence; ∗E = F

ζ(E = ∗F) ≜ lfence; E = ∗F
ζ((∗E)(F1, . . . , Fk)) ≜ lfence; (∗E)(F1, . . . , Fk)

11/ 12

Kernel Safety ⇒ Speculative Kernel Safety (3/3)

Does such transformation exist? Yes.

ζ(if(E) {C} else {D}) ≜ if(E) {ζ(C)} else {ζ(D)}
ζ(while(E) {C}) ≜ while(E) {ζ(C)}

ζ(∗E = F) ≜ lfence; ∗E = F

ζ(E = ∗F) ≜ lfence; E = ∗F
ζ((∗E)(F1, . . . , Fk)) ≜ lfence; (∗E)(F1, . . . , Fk)

12/ 12

Conclusions

▶ Layout Randomization protects the kernel against ordinary
attacks in presence of LNI,

but not against the speculative
ones.

▶ If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

▶ Model indirect branch speculation.
▶ Evaluate the overhead of our instrumentation in practice.

12/ 12

Conclusions

▶ Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

▶ If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

▶ Model indirect branch speculation.
▶ Evaluate the overhead of our instrumentation in practice.

12/ 12

Conclusions

▶ Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

▶ If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

▶ Model indirect branch speculation.
▶ Evaluate the overhead of our instrumentation in practice.

12/ 12

Conclusions

▶ Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

▶ If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

▶ Model indirect branch speculation.
▶ Evaluate the overhead of our instrumentation in practice.

12/ 12

Conclusions

▶ Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

▶ If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

▶ Model indirect branch speculation.

▶ Evaluate the overhead of our instrumentation in practice.

12/ 12

Conclusions

▶ Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

▶ If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

▶ Model indirect branch speculation.
▶ Evaluate the overhead of our instrumentation in practice.

