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Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

Key idea: attackers do not know where things are stored.
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Kernel's Execution Model

» Privilege level: user or kernel
» Syscalls change privilege level
> Disjoint address spaces

> Attacker: user-space program.

void A (void){

x = //syscall

y = f(x) //ordinary call
y=y+z
print(y) //syscall

Privilege level:

Kernel's Address
Space (randomized)

Safety Violation
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Kernel Safety (no side-channels and speculative execution)

For every collection of system calls ~:

KASLR A LNI(~y) = probabilistic safety

__the semantics of the syscalls in v must not de-

LNI() = pend on the layout

Victim LNI

return p (p array pointer) no
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Instructions leak information on the layout.

Victim Leaked information
*0xfla34 = x; data_op Oxfla34
x = x0xf1a34; data_op Oxfla34
(x0xf1a34)(); jump Oxfla34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

LNI(y) = the semantics of the
= syscalls in v must not depend on the layout
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KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
i) 0:
s(false,i); o
2:
} 3:
void s (x, v){ ;L Mt -
i 6:
if(x) 6
(+7)(=);
}
the semantics and
LNI(~) := of the syscalls in 7 must not depend on the

layout
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KASLR with Speculative Attackers and Side-Channels

SLNI(y) = safety

\
KASLR A SLNI(v) = probabilistic safety

Victim SLNI
p[0] =42 (p array pointer) no
£() (f procedure) no
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v is safe against speculative attackers

*

v is safe against ordinary attackers

But maybe there is an instrumentation ¢ such that:

v is safe against ordinary attackers

4

¢(y) is safe against speculative attackers
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Kernel Safety = Speculative Kernel Safety (2/3)

Theorem
If¢:
> preserves the semantics of the syscalls,
» prevents the transient execution of unsafe commands,

and +y is safe against ordinary attackers, then ((~) is safe against
speculative attackers.



Kernel Safety = Speculative Kernel Safety (3/3)

Does such transformation exist?



Kernel Safety = Speculative Kernel Safety (3/3)

Does such transformation exist? Yes.



Kernel Safety = Speculative Kernel Safety (3/3)

Does such transformation exist? Yes.

C(1£(E) {C} else {D}) = if(E) {¢(C)} else {((D)}
¢(while(E) {C}) £ while(E) {¢(C)}
((+E =F) £ 1fence;*E =F
C(E = +F) £ 1fence;E = #F
C((+E)(F1,...,Fx)) = 1fence; (+E)(F1, ..., Fk)
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Conclusions

» Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

> If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

» Model indirect branch speculation.

» Evaluate the overhead of our instrumentation in practice.



