On Kernel Safety and Speculative Execution

Work in progress

Davide Davoli'?> Tamara Rezk 2 Martin Avanzini?

LUniversité Céte d’Azur

2INRIA

34 April 2024 — Annual Meeting of the WG “Formal Methods

in Security”
- £COLE UNIVERSITAIRE DE RECHERCH ’
UNIVERSITE l s(:l)srizr»;ss NU;ERIQLFIES ey P

COTEDAZUR | POURL'HUMAIN w5 = ela—

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory

N

N

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

N

N

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

N

N

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

N

N

Address Space Layout Randomization

Layout randomization is a software mechanism to enforce memory
safety and control flow integrity.

Memory Randomized Memory

Key idea: attackers do not know where things are stored.

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on:

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on: side-channels

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on: side-channels, speculative
execution.

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on: side-channels, speculative
execution.

Research questions and contributions:

> Is KASLR effective without side-channels and speculative
execution?

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on: side-channels, speculative
execution.

Research questions and contributions:

> Is KASLR effective without side-channels and speculative
execution? Yes.

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on: side-channels, speculative
execution.

Research questions and contributions:

> Is KASLR effective without side-channels and speculative
execution? Yes.

> Is it effective against side-channels and speculative execution?

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on: side-channels, speculative
execution.

Research questions and contributions:

> Is KASLR effective without side-channels and speculative
execution? Yes.

> Is it effective against side-channels and speculative execution?
Not really...

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on: side-channels, speculative
execution.

Research questions and contributions:

> Is KASLR effective without side-channels and speculative
execution? Yes.

> Is it effective against side-channels and speculative execution?
Not really...

» Can we do something else?

Open Problems, Research Questions and Contributions

Open Problems:

» No formal study of Layout Randomization for kernel memory
(KASLR).

» Attacks to KASLR based on: side-channels, speculative
execution.

Research questions and contributions:

> Is KASLR effective without side-channels and speculative
execution? Yes.

> Is it effective against side-channels and speculative execution?
Not really...

» Can we do something else? Yes.

Kernel's Execution Model

» Privilege level: user or kernel

Kernel's Execution Model

» Privilege level: user or kernel

» Syscalls change privilege level

Kernel's Execution Model

» Privilege level: user or kernel
» Syscalls change privilege level

» Disjoint address spaces

Kernel's Execution Model

» Privilege level: user or kernel
» Syscalls change privilege level

» Disjoint address spaces Kernel's Address

User's Address Space Space (randomized)

Kernel's Execution Model

» Privilege level: user or kernel
> Sysca”S Change prIVI|ege |eVe| Privilege level:

» Disjoint address spaces ,
User's Address Space

Kernel's Execution Model

» Privilege level: user or kernel
| 4 Sysca”S Change prIVI|ege |eVe| Privilege level:
> Disjoint address spaces Kernel's Address

Space (randomized)

Kernel's Execution Model

» Privilege level: user or kernel
> Sysca”S Change prIVI|ege |eVe| Privilege level:
» Disjoint address spaces Kernel's Address

User's Address Space Space (randomized)

» Attacker: user-space program.

Kernel's Execution Model

» Privilege level: user or kernel
4 Sysca”S Change prIVI|ege |eVe| Privilege level:
» Disjoint address spaces Kernel's Address

User's Address Space Space (randomized)

P Attacker: user-space program.

void A (void){

x = get_uid(); //syscall

y = f(x); //ordinary call
y =y+tz
print(y); //syscall

Kernel's Execution Model

» Privilege level: user or kernel
4 Sysca”S Change prIVI|ege |eVe| Privilege level:

» Disjoint address spaces ,
User's Address Space

P Attacker: user-space program. x:

void A (void){
x = get_uid(); //syscall

y = f(x); //ordinary call
y = y+z 5
print(y); //syscall

Kernel's Execution Model

» Privilege level: user or kernel

» Syscalls change privilege level Privilege lovel:
» Disjoint address spaces Kernel's Address

Space (randomized)

> Attacker: user-space program.

void A (void){

x = //syscall
y = f(x) //ordinary call e

y = y+tz
print(y) //syscall

Kernel's Execution Model

» Privilege level: user or kernel

» Syscalls change privilege level Privilege lovel:
» Disjoint address spaces Kernel's Address

Space (randomized)

> Attacker: user-space program.

void A (void){

x = //syscall
y = f(x) //ordinary call e

y = y+tz
print(y) //syscall

Kernel's Execution Model

» Privilege level: user or kernel
» Syscalls change privilege level
> Disjoint address spaces

> Attacker: user-space program.

void A (void){

x = //syscall

y = f(x) //ordinary call
y=y+z
print(y) //syscall

Privilege level:

Kernel's Address
Space (randomized)

Safety Violation

Kernel Safety (no side-channels and speculative execution)

For every collection of system calls ~:

KASLR A LNI(~y) = probabilistic safety

Kernel Safety (no side-channels and speculative execution)

For every collection of system calls ~:

KASLR A LNI(~y) = probabilistic safety

__the semantics of the syscalls in v must not de-

LNI() = pend on the layout

Kernel Safety (no side-channels and speculative execution)

For every collection of system calls ~:

KASLR A LNI(~y) = probabilistic safety

__the semantics of the syscalls in v must not de-

LNI() = pend on the layout

Victim LNI

return p (p array pointer) no

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
*0xfl1a34 = x; data_op Oxfla34

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
*0xfl1a34 = x; data_op Oxfla34
x = x0xfla34; data_op Oxfla34

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
*0xfla34 = x; data_op Oxfla34
x = x0xfla34; data_op Oxfla34

(x0xf1a34)(); jump Oxf1la34

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
*0xfla34 = x; data_op Oxfla34
x = x0xfla34; data_op Oxfla34
(x0xf1a34)(); jump Oxfla34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
x0xfla34 = x; data_op Oxfla34
x = %x0xf1a34; data_op Oxfla34
(x0xf1a34)(); jump Oxfla34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

LNI() := the semantics of the syscalls in v must not de-
77" bend on the layout

KASLR in the presence of Side-Channel Attackers

Instructions leak information on the layout.

Victim Leaked information
*0xfla34 = x; data_op Oxfla34
x = x0xf1a34; data_op Oxfla34
(x0xf1a34)(); jump Oxfla34

To restore the protection offered by KASLR, LNI needs to be
strengthened:

LNI(y) = the semantics of the
= syscalls in v must not depend on the layout

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

void s (%, v){

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o
} %
void s(,){ ;L Ax.....
if() s
(+)(=);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o
} %
void s(,){ ;L Ax.....
if() s
(+)(=);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

— for(i=0;i<8i++){

force(true); Randomized Kernel Memory
s(false,i); o
} %
void s(,){ ;L Ax.....
if() s
(+)(=);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

— force(true); Randomized Kernel Memory

s(false,i); o
2:
} 3:

void s (¥, v){ ;L Mo
i 6:
lf() 7:

() ()

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o
} a
void s(,){ ;L Ax. ...
— if(x) ?
() (=x);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o -
} a
void s(,){ ;L Ax. ...
— if(x) ?
() (=x);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o -
} a
void s(,){ ;L Ax. ...
— if(x) ?
() (=x);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o «
} %
void s(,){ ;L Ax.....
if() s
(+)(=);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

— for(i=0;i<8i++){

force(true); Randomized Kernel Memory
s(false,i); o
} %
void s(,){ ;L Ax..... —
if() s
(+)(=);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

— force(true); Randomized Kernel Memory
s(false,i); o
2:
} 3:
void s (¥, v){ ;L Mo -
i 6:
lf() 7:
() ()

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o
} a
void s(,){ ;L Ax. ... —
— if(x) ?
() (=x);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o
} a
void s(,){ ;L Ax. ... —
— if(x) ?
() (=x);

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i=0;1i <8 i+ +){

force(true); Randomized Kernel Memory
s(false,i); o
2:
} 3:
void s (x, v){ ;L [-
i 6:
if(x) 6:
(+)(=);
}
LNI(y) = the semantics of the

syscalls in v must not depend on the layout

KASLR in presence of Speculative Attackers

The system call s is a threat in presence of speculative attackers
(BlindSide), and we can model it.

for(i =0;1 <8 i+ +){

force(true); Randomized Kernel Memory
i) 0:
s(false,i); o
2:
} 3:
void s (x, v){ ;L Mt -
i 6:
if(x) 6
(+7)(=);
}
the semantics and
LNI(~) := of the syscalls in 7 must not depend on the

layout

KASLR with Speculative Attackers and Side-Channels

SLNI(~y) = safety

KASLR with Speculative Attackers and Side-Channels

SLNI(y) = safety

\
KASLR A SLNI(v) = probabilistic safety

KASLR with Speculative Attackers and Side-Channels

SLNI(y) = safety

\
KASLR A SLNI(v) = probabilistic safety

Victim SLNI

KASLR with Speculative Attackers and Side-Channels

SLNI(y) = safety

\
KASLR A SLNI(v) = probabilistic safety

Victim SLNI
p[0] =42 (p array pointer) no

KASLR with Speculative Attackers and Side-Channels

SLNI(y) = safety

\
KASLR A SLNI(v) = probabilistic safety

Victim SLNI
p[0] =42 (p array pointer) no
£() (f procedure) no

Kernel Safety = Speculative Kernel Safety (1/3)

v is safe against speculative attackers

4

v is safe against ordinary attackers

Kernel Safety = Speculative Kernel Safety (1/3)

v is safe against speculative attackers
17

v is safe against ordinary attackers

Kernel Safety = Speculative Kernel Safety (1/3)

v is safe against speculative attackers

*

v is safe against ordinary attackers

Kernel Safety = Speculative Kernel Safety (1/3)

v is safe against speculative attackers

*

v is safe against ordinary attackers

But maybe there is an instrumentation ¢ such that:

v is safe against ordinary attackers

4

¢(y) is safe against speculative attackers

Kernel Safety = Speculative Kernel Safety (2/3)

Theorem
IFC:

Kernel Safety = Speculative Kernel Safety (2/3)

Theorem
IFC:

> preserves the semantics of the syscalls,

Kernel Safety = Speculative Kernel Safety (2/3)

Theorem
If¢:
> preserves the semantics of the syscalls,

» prevents the transient execution of unsafe commands,

Kernel Safety = Speculative Kernel Safety (2/3)

Theorem
If¢:
> preserves the semantics of the syscalls,
» prevents the transient execution of unsafe commands,

and +y is safe against ordinary attackers, then ((~) is safe against
speculative attackers.

Kernel Safety = Speculative Kernel Safety (3/3)

Does such transformation exist?

Kernel Safety = Speculative Kernel Safety (3/3)

Does such transformation exist? Yes.

Kernel Safety = Speculative Kernel Safety (3/3)

Does such transformation exist? Yes.

C(1£(E) {C} else {D}) = if(E) {¢(C)} else {((D)}
¢(while(E) {C}) £ while(E) {¢(C)}
((+E =F) £ 1fence;*E =F
C(E = +F) £ 1fence;E = #F
C((+E)(F1,...,Fx)) = 1fence; (+E)(F1, ..., Fk)

Conclusions

» Layout Randomization protects the kernel against ordinary
attacks in presence of LNI,

Conclusions

» Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

Conclusions

» Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

> If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Conclusions

» Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

> If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

Conclusions

» Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

> If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

» Model indirect branch speculation.

Conclusions

» Layout Randomization protects the kernel against ordinary
attacks in presence of LNI, but not against the speculative
ones.

> If a kernel is safe against ordinary attacks, it is possible to
make it safe against speculative attacks.

Future work:

» Model indirect branch speculation.

» Evaluate the overhead of our instrumentation in practice.

