
Formal Analysis of Widevine DRM/EME

Stéphanie Delaune, Joseph Lallemand, Gwendal Patat, Florian Roudot, Mohamed Sabt
3 April 2024

1



DRM Systems

▶ Digital Rights Management:
restrict uses of digital content – prevent copy, etc.

▶ Used for music, books, video games, video streaming. . .

2



DRM Systems

DRM System A

DRM System B

DRM System C

Protected media

Protected media

Clear media playback

Protected media

Clear media playback

Protected media

Clear media playback

Proprietary mechanisms

W3C EME

W3C EME

W3C EME

Over-the-top provider (OTT)
Licence server

Content Decryption Module (CDM)

3



Encrypted Media Extension (EME)

▶ EME: A standard defined by the
World Wide Web Consortium (W3C)

▶ An API to make DRM use in browsers more uniform

▶ Integrated into all major browsers

▶ An “opaque” specification

4



Contribution

▶ Our goal: formally study the security of
EME instantiated by Widevine

▶ Reverse engineer the proprietary Widevine protocol

▶ Define security properties (not present in EME spec)

▶ Model and prove in Tamarin

⬇

5



EME Specification

▶ Standard defines EME workflow and messages:
▶ Initiate session

▶ Initial Licence request/response

▶ Licence Renewal request/response

▶ Using a licence to decrypt

▶ Does not specify the content of messages or
internal behaviour of the CDM
→ they are proprietary and implementation-specific

License
Server

Browser
EME API

EME compatible CDMs

1a
Instantiate selected CDM
createMediaKeys()

Selected CDM
e.g., Widevine

2
Create a session
MediaKeys.createSession

3
Ask for License Request
MediaKeySession.generateRequest()

4
Opaque License Request
onMessage()

7
Opaque License Response
MediaKeySession.update()

9
Opaque Renewal Request
onMessage()

12
Opaque Renewal Response
MediaKeySession.update()

13
Close session
MediaKeySession.close()

5 POST request

6 POST response

POST request

POST response11

8
Decrypt Frame
HTMLMediaElement.onencrypted()

10

loop

optional loop

1b
Bind Server and CDM
setServerCertificate()

6



Reverse engineering of Widevine EME messages – Initial Licence

EME Message Widevine EME Message Content
Licence Request ⟨reqID, nonce, {clientID}privacyK, {privacyK}serviceCert, keyID, t1⟩ = req

+ signature of req with deviceK

Licence Response {sessionK}deviceK,
⟨reqID, t1, ∆t, keyID, {contentK}assetK, {nonce}contentK, policy⟩ = resp

+ MAC of resp with macKS

▶ Hierarchy of keys:

deviceK → sessionK → assetK, macKS, macKC → contentK
assetK, macKS, macKC = KDF (tags, req, sessionK)

▶ nonce to ensure freshness
▶ Timestamps and time-to-live to control licence expiration 7



Reverse engineering of Widevine EME messages – Licence Renewal

EME Message Widevine EME Message Content
Renewal Request ⟨reqID, {clientID}privacyK′ , {privacyK′}serviceCert, t1, t2, ctr, nonce′⟩

+ MAC with macKC

Renewal Response ⟨reqID, t1, t2, ctr + 1, policy′, ∆t, {nonce′}contentK⟩
+ MAC with macKS

▶ Counter ctr to ensure correspondence between request/response

▶ Two slightly different versions:
nonce′ in renewal is present on Android, but absent on desktop

8



Security properties for Widevine

▶ Specifications are not public, EME gives no security guarantees
No standard security definitions for such DRM systems(

⇒ We propose our own definitions for the security of Widevine +

▶ Attacker scenario:
trusted CDM and OTT, untrusted network and API user (browser/client)

▶ We introduce seven security goals, split into three groups

Security Goal 1: Key Confidentiality
Content decryption keys remain secret.

9



Security properties for Widevine

▶ Specifications are not public, EME gives no security guarantees
No standard security definitions for such DRM systems(
⇒ We propose our own definitions for the security of Widevine +

▶ Attacker scenario:
trusted CDM and OTT, untrusted network and API user (browser/client)

▶ We introduce seven security goals, split into three groups

Security Goal 1: Key Confidentiality
Content decryption keys remain secret.

9



Security properties for Widevine

▶ Specifications are not public, EME gives no security guarantees
No standard security definitions for such DRM systems(
⇒ We propose our own definitions for the security of Widevine +

▶ Attacker scenario:
trusted CDM and OTT, untrusted network and API user (browser/client)

▶ We introduce seven security goals, split into three groups

Security Goal 1: Key Confidentiality
Content decryption keys remain secret.

9



Security properties for Widevine

▶ Specifications are not public, EME gives no security guarantees
No standard security definitions for such DRM systems(
⇒ We propose our own definitions for the security of Widevine +

▶ Attacker scenario:
trusted CDM and OTT, untrusted network and API user (browser/client)

▶ We introduce seven security goals, split into three groups

Security Goal 1: Key Confidentiality
Content decryption keys remain secret.

9



Security goals for initial licences

Security Goal 2: Integrity
The CDM must load initial licence responses as they were generated by the OTT.

Security Goal 3: Freshness
A given licence response can be loaded at most once,
and only by the CDM generating the corresponding request.

Security Goal 4: Expiration
In the initial phase, the CDM can use a decryption key at time t
only if the OTT granted a licence for it expiring at time t0 + ∆t ≥ t.

10



Security goals for licence renewal

Security Goal 5: Integrity
The CDM must load renewal responses as they were generated by the OTT.

Security Goal 6: Freshness
A given renewal response can be loaded at most once, and only by the right CDM,
and a CDM loads at most one response per renewal event.

Security Goal 7: Expiration
In the renewal phase, the CDM can use a decryption key at time t
only if the OTT granted a (renewed) licence for it expiring at time t0 + ∆t ≥ t.

11



Formal analysis of Widevine/EME

▶ We analyse Widevine/EME using the Tamarin prover
(both Android and desktop version)

▶ A fairly complex protocol to model:
▶ two roles (CDM & Licence Server), unbounded sessions ,
▶ a stateful API ,
▶ with loops
▶ and counters
▶ and timers. . .

⬇

12



Modelling of time in Tamarin

⏳

▶ Widevine messages contain timestamps, and Goals 4 and 7 explicitly mention time

▶ No built-in support for time-based properties in Tamarin

▶ We propose our own encoding of time

▶ Time as an integer %t
▶ Each protocol rule receives it In(%t), has event GTime(%t)
▶ It can appear in protocol messages and lemmas:

GTime(%t1)@i & State(%t2, . . . )@i ⇒ %t1 << %t2 . . .

▶ Attacker chooses the time each rule is executed, a restriction forces consistent choices:

#i < #j & GTime(%t1)@i & GTime(%t2)@j ⇒ %t1 << %t2

13



Modelling of time in Tamarin

⏳

▶ Widevine messages contain timestamps, and Goals 4 and 7 explicitly mention time

▶ No built-in support for time-based properties in Tamarin

▶ We propose our own encoding of time

▶ Time as an integer %t
▶ Each protocol rule receives it In(%t), has event GTime(%t)
▶ It can appear in protocol messages and lemmas:

GTime(%t1)@i & State(%t2, . . . )@i ⇒ %t1 << %t2 . . .

▶ Attacker chooses the time each rule is executed, a restriction forces consistent choices:

#i < #j & GTime(%t1)@i & GTime(%t2)@j ⇒ %t1 << %t2
13



Conclusion & future work

▶ We reverse-engineered the Widevine DRM protocol

▶ We propose definitions for the security of Widevine as an EME instance

▶ We formally analyse the protocol in Tamarin

Future work

▶ Privacy properties

▶ Model for dishonest Licence server

▶ Other DRM systems

14



Questions?

%

15


