
Proving e-voting mixnets in the CCSA model: zero-knowledge proofs and rewinding

Margot Catinaud * Caroline Fontaine * Guillaume Scerri *

*Université Paris-Saclay, CNRS, ENS Paris-Saclay,
Laboratoire Méthodes Formelles (LMF)

GT MFS, April 2024

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 1 / 18

Introduction Mixnets

Electronic voting mixnets

Two kinds of tally

Homomorphic encryption Mix networks + Decrypt

Principle

Mix Mix ... Mix
−→
b (in) −→

b (out)

Network of mix-servers

Algorithm : Mixing

let mixing
−→b (in) =

π
$← SN ;

[do some stuff...] ;
return

−→
b (out)

Mix-server in a nutshell

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 2 / 18

Introduction Mixnets

Terelius & Wikström mixnet ([TW10], [Wik11])

Security properties for one mix-server

Permutation secrecy Verifiability

Key ingredients needed

Commitment scheme Zero-knowledge proofs

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 3 / 18

Introduction Mixnets

Zero-knowledge proofs - case of Σ-protocols

Principle
• Two agents: a prover P and a verifier V
• Goal: prove that (x︸︷︷︸

statement

, w︸︷︷︸
witness

) ∈ R

• Interactive proof: proof transcript

(p0︸︷︷︸
commit

, c︸︷︷︸
challenge

, p1︸︷︷︸
response

)
Sigma-protocol

Main security properties

Special-Soundness Zero-knowledge

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 4 / 18

Verifiability property Verifiability game

Verifiability game

Cryptographic game — Mix-server verifiability.

Context

Adversarial mix-server Honest verifier V

Game statement

Hypothesis

Proofs accepted by V

=⇒

Conclusion

Dec
−→
b (out) = Dec

(
Mπ ·

−→
b (in)

)
Output plaintexts is a permutation of input

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 5 / 18

Verifiability property Verifiability game

Computationally Complete Symbolic Attacker (CCSA) model

The Squirrel prover
([Bae+21])

• First introduce by Bana & Comon ([BC14]), high-order logic by Baelde,
Koutsos & Lallemand ([BKL23])
• Main predicates: ∼ (indistinguishability)

and
[
·
]

(globally (non-)negligible events)
• Interpretation of terms for a fixed random tape ρ: [[t]]ρ.
• In our case: work on trace properties
• Formulas φ are terms of type bool.

Two kinds of logic
Global logic Local logic[

φ
]
→̃

[
ψ
]

means:
If Prρ∈Ω

(
[[φ]]ρ

)
is overwhelming

then Prρ∈Ω

(
[[ψ]]ρ

)
is overwhelming.

[
φ→ ψ

]
means:

Prρ∈Ω

(
[[φ→ ψ]]ρ

)
is overwhelming.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 6 / 18

Verifiability property Sketch of proof

Sketch of proof

Extraction of sealed matrix M
• Witness extractor
• Collect enough witness
• Reconstruction of sealed informations

Is M a permutation matrix?
• Witness extractor
• Witness consistency
• Generalization of equations on witness to equations on matrix
• Characterization of permutation matrix
−→
b (out) = ReRand

(
M ·
−→
b (in))?

• Another witness extractor
• Consistency between the witness and the extracted matrix
• Generalization to the whole set of ciphertexts in/out pairs

Rewinding

Rewinding

Algebra

Rewinding

Cryptography

Algebra

Algebra

Rewinding

Cryptography

Algebra

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 7 / 18

Rewinding lemma Special-Soundness

Special-Soundness

Statement

p1
R(c1) with c1

p1
R(c2) with c2

c1 6= c2

Extractor Witness

p0
R

Axiomatization in the CCSA logic

L.SP:SpSo

∃̃ extractR [ptime].

 ∧
i∈{1,2}

verifyR(x , (p0
R, ci , p1,(i)

R)︸ ︷︷ ︸
p(i)R

) ∧ c1 6= c2 → (x , extractR(x , p(1)
R , p(2)

R)) ∈ R

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 8 / 18

Rewinding lemma Special-Soundness

Witness extraction algorithm

Algorithm : Witness extraction
Input: Adversary A producing sometimes a proof accepted by the verifier V.
Run p0 ← A(x) ;
repeat

Choose c1 ← V(1η, x , p0) then run p1 ← A(x , p0, c1) ;
Rewind A ;
Choose c2 ← V(1η, x , p0) then run p2 ← A(x , p0, c2) ;
Check if true← V(x , p1) and true← V(x , p2) ;

until p1 and p2 are accepted by V and c1 6= c2;
return w ← extractR(x , p1, p2) ;

where pi := (p0, ci , pi) for i = 1, 2.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 9 / 18

Rewinding lemma Logical framework

First attempt

A first local hunch...

L.Extract
verifyR(x , pR(r1))

(x , extractR(x , pR(r1), pR(r2))) ∈ R

where pR := λr .(p(0)
R , r , p(1)

R (r)) for some fixed p(0)
R .

Problem
• verifyR(x , pR(r1)) 6=⇒ verifyR(x , pR(r2)) for r1 6= r2:

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 10 / 18

Rewinding lemma Logical framework

First attempt

A first local hunch...

L.Extract
verifyR(x , pR(r1))

(x , extractR(x , pR(r1), pR(r2))) ∈ R

where pR := λr .(p(0)
R , r , p(1)

R (r)) for some fixed p(0)
R .

Problem
• verifyR(x , pR(r1)) 6=⇒ verifyR(x , pR(r2)) for r1 6= r2:

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 10 / 18

Rewinding lemma Logical framework

First attempt

A first local hunch...

L.Extract
verifyR(x , pR(r1))

(x , extractR(x , pR(resample(r1)), pR(resample(r1)))) ∈ R

where pR := λr .(p(0)
R , r , p(1)

R (r)) for some fixed p(0)
R .

Problem
• verifyR(x , pR(r1)) 6=⇒ verifyR(x , pR(r2)) for r1 6= r2:

• If φ is locally true, it says nothing about the distribution of
[
ρ ∈ Ω [[φ]]ρ

]
.

• Thus, we need to characterize events which holds with non-negligible probability.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 10 / 18

Rewinding lemma Logical framework

First attempt

A first local hunch...

L.Extract
verifyR(x , pR(r1))

(x , extractR(x , pR(resample(r1)), pR(resample(r1)))) ∈ R

where pR := λr .(p(0)
R , r , p(1)

R (r)) for some fixed p(0)
R .

Problem
• verifyR(x , pR(r1)) 6=⇒ verifyR(x , pR(r2)) for r1 6= r2:
• If φ is locally true, it says nothing about the distribution of

[
ρ ∈ Ω [[φ]]ρ

]
.

• Thus, we need to characterize events which holds with non-negligible probability.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 10 / 18

Rewinding lemma Logical framework

An addition to the CCSA logic: e
[
_
]

predicate

e

[
_
]

predicate

For a formula φ : bool and a non-negligible term e : real [non-negl], we define:

e

[
φ
]
⇐⇒ Prρ∈Ω

(
[[φ]]ρ

)
> e

• We want the following equivalence:

¬̃
[
¬φ

]
↔̃ ∃̃ e : real [non-negl]. e

[
φ
]

• and we want
e

[
φ(r)

]
→̃

[
φ(resample(r))

]
• e : real [non-negl] means that η 7−→ [[e]]η is non-negligible,

i .e. their exists a polynomial P such that: ∃ η0 ∈ N∗,∀ η > η0, [[e]]η >
1

P(η)
.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 11 / 18

Rewinding lemma Logical framework

Are we done yet?

G.Extract
e

[
verifyR(x , pR(r))

][
(x , extractR(x , pR(resample(r)), pR(resample(r)))) ∈ R

]
where pR := λr .(p(0)

R , r , p(1)
R (r)) for some fixed p(0)

R .

No, not yet

xh

SetupR

xadv
A

p(0)
R

A
r
VR

p(1)
R (r)
A

Rewinding
Local (i .e. fixed) samplings Global samplings

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 12 / 18

Rewinding lemma Logical framework

Are we done yet?

G.Extract
e

[
verifyR(x , pR(r))

][
(x , extractR(x , pR(resample(r)), pR(resample(r)))) ∈ R

]
where pR := λr .(p(0)

R , r , p(1)
R (r)) for some fixed p(0)

R .

No, not yet

xh

SetupR

xadv
A

p(0)
R

A
r
VR

p(1)
R (r)
A

Rewinding
Local (i .e. fixed) samplings Global samplings

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 12 / 18

Rewinding lemma Logical framework

What is missing

• Let φ : (rl , rg) 7−→ φ(rl , rg) where rg is the resampled value and rl refers to other fixed samples.
• We want to study the set

{
rl φ(rl , rg) holds with non-negligible probability on rg

}
.

• Let pl be the following function
pl := rl 7−→ Prrg

(
φ(rl , rg)

)

pl(rl) < e pl(rl) > e

Sampling space (on rl)

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 13 / 18

Rewinding lemma Logical framework

Another addition to the CCSA logic

Selection of sampling space predicate
• Let φ : (rl , rg) 7−→ φ(rl , rg) be a function predicate.
• Variable rg is the parameters we want to rewind in the predicate φ.
• select is a local predicate saying that locally we are in the ”good” case where φ holds.

select predicate

[[select(e, φ(rl))]]ρ := Prrg

(
[[φ(rl)]]ρ(rg)

)
> e.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 14 / 18

Rewinding lemma Logical framework

Proof strategy - Step 1

Goal proof under select guard - Axiomatization
The G.Extract rule becomes

G.Sel-Intro[
select(e, ψR(rl))→

(
x(rl), extractR(x(rl), p(1)

R (rl , resample(rg)), p(2)
R (rl , resample(rg)))

)]

Where ψR(rl) := rg 7−→ verifyR
(
x(rl), (p0

R(rl), rg , p1
R(rg))

)
.

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 15 / 18

Rewinding lemma Logical framework

Rewinding lemma

Statement

resample predicate
Let φ : rg 7−→ φ(rg) be a predicate. If rg : nat→ τg then

∃̃ k : nat [poly]. ∃̃ resample : list → τg .[
select(e, φ)→ φ(resample(rg 1, . . . , rg k))

]

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 16 / 18

Rewinding lemma Logical framework

Proof strategy - Step 2

Glue splitted parts back together
H : r 7−→ H r (Hypothesis predicate); Goal : r 7−→ Goal r (Goal predicate).

G.Sel-Elim
∀̃ e : real [non-negl].

[
select(e,H)→ H r → Goal r

][
H r → Goal r

]

Why does it work?

Proof by contraposition: we want to prove

e

[
H r ∧ ¬Goal r

]
e/2

[
select

(e
2 ,H

)
∧H r ∧ ¬Goal r

]
size α, weight a size β, weight b

Prr

(
H r

)
< e/2 Prr

(
H r

)
> e/2

We have a 6 e/2 and b 6 β.
Therefore, as a + b > e, β > e/2

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 17 / 18

Rewinding lemma Logical framework

Proof strategy - Step 2

Glue splitted parts back together
H : r 7−→ H r (Hypothesis predicate); Goal : r 7−→ Goal r (Goal predicate).

G.Sel-Elim
∀̃ e : real [non-negl].

[
select(e,H)→ H r → Goal r

][
H r → Goal r

]
Why does it work?

Proof by contraposition: we want to prove

e

[
H r ∧ ¬Goal r

]
e/2

[
select

(e
2 ,H

)
∧H r ∧ ¬Goal r

]
size α, weight a size β, weight b

Prr

(
H r

)
< e/2 Prr

(
H r

)
> e/2

We have a 6 e/2 and b 6 β.
Therefore, as a + b > e, β > e/2

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 17 / 18

Conclusion

Conclusion

Take aways
• To axiomatize rewinding argument, we have to resample only a part of the random tape;
• We need to talk about formulas sometimes true;
• High-order logic was needed for the rewinding lemma!

Other works done
• Complete formal proof of the permutation secrecy property;
• First complete proof of Terelius & Wikström mixnet protocol.

What next?
• Reprogrammable Random Oracle Model
• Sigma-protocols → NIZK proof (Fiat-Shamir transform) ...
• ... Towards proof of in practice used mix-network protocols

(CHVote and Belenios).

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 18 / 18

Conclusion

Conclusion

Take aways
• To axiomatize rewinding argument, we have to resample only a part of the random tape;
• We need to talk about formulas sometimes true;
• High-order logic was needed for the rewinding lemma!

Other works done
• Complete formal proof of the permutation secrecy property;
• First complete proof of Terelius & Wikström mixnet protocol.

What next?
• Reprogrammable Random Oracle Model
• Sigma-protocols → NIZK proof (Fiat-Shamir transform) ...
• ... Towards proof of in practice used mix-network protocols

(CHVote and Belenios).

Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 18 / 18

Conclusion

Conclusion

Take aways
• To axiomatize rewinding argument, we have to resample only a part of the random tape;
• We need to talk about formulas sometimes true;
• High-order logic was needed for the rewinding lemma!

Other works done
• Complete formal proof of the permutation secrecy property;
• First complete proof of Terelius & Wikström mixnet protocol.

What next?
• Reprogrammable Random Oracle Model
• Sigma-protocols → NIZK proof (Fiat-Shamir transform) ...
• ... Towards proof of in practice used mix-network protocols

(CHVote and Belenios).

Thank you for your attention!1

1Icons comes from the Flaticons website (https://www.flaticon.com/)
Margot Catinaud (LMF) Proving rewinding lemma in CCSA GT MFS 2024 18 / 18

	Introduction
	Mixnets

	Verifiability property
	Verifiability game
	Sketch of proof

	Rewinding lemma
	Special-Soundness
	Logical framework

	Conclusion

