
Multi-agent simulation of attacks
on distributed protocols:

application to order fairness in Hyperledger Fabric

Ongoing work at CEA-LIST LICIA

Erwan Mahe - 2024 04 05 @ GT MFS

Adversarial Simulations of Distributed Ledgers January 18, 2024 1/30

Summary

1. Distributed Ledgers & Order Fairness
1.1 Preliminaries
1.2 Distributed Ledgers
1.3 Order fairness

2. Adversary-Augmented Simulation
2.1 Motivation
2.2 Adversary model

3. Use case
3.1 Application layer & goal of the adversary
3.2 The system
3.3 Delay attack
3.4 Peer sabotage
3.5 Orderer sabotage

Adversarial Simulations of Distributed Ledgers January 18, 2024 2/30

Distributed Ledgers & Order Fairness

Distributed Ledgers
& Order Fairness

Adversarial Simulations of Distributed Ledgers January 18, 2024 3/30

Distributed Ledgers & Order Fairness ; Preliminaries

Communication models

te tr

▶ asynchronous: tr − te ∈]0,+∞] so may never be received
▶ synchronous: ∃ ∆ ∈]0,+∞[s.t., tr − te ∈]0,∆]

▶ eventually/partially synchronous: ∃ GST ∈]0,+∞[,
∃ ∆ ∈]0,+∞[s.t., (te > GST) ⇒ (tr − te ≤ ∆)

Impossibility of distributed consensus with one faulty process

- Fischer, Lynch & Paterson - Journal of the ACM 1985

Consensus in the presence of partial synchrony

- Dwork, Lynch & Stockmeyer - Journal of the ACM 1988

Adversarial Simulations of Distributed Ledgers January 18, 2024 4/30

Distributed Ledgers & Order Fairness ; Preliminaries

Failure models

byzantine
performance

omission
crash

▶ crash: terminates prematurely
▶ omission: some events are not delivered
▶ performance: concerns timing

constraints
▶ byzantine: unexpected behavior

What Good Are Models and What Models Are Good ?

- Schneider - Distributed Systems 2nd Ed 1993

Adversarial Simulations of Distributed Ledgers January 18, 2024 5/30

Distributed Ledgers & Order Fairness ; Distributed Ledgers

Principle of Distributed Ledgers

▶ distributed ledgers are replicated SMs
▶ key-value store content ⇔ (global) state ⇔ any local state
▶ state change ⇔ transaction delivery
▶ coherence ⇐ eventually delivering the same transactions in the same order

Adversarial Simulations of Distributed Ledgers January 18, 2024 6/30

Distributed Ledgers & Order Fairness ; Distributed Ledgers

Context

In the following we consider:
▶ Blockchains as the means to implement Distributed Ledgers (i.e., transactions

are sequentially batched into blocks)
▶ non-revocable blockchains (i.e., once a block/a transaction is delivered there are

no rollbacks)

Properties of interest:
▶ most protocols/algorithms involved in Blockchains are Byzantine Fault Tolerant
▶ but tolerance w.r.t. specific properties (often related to consistency and liveness)
▶ consistency refers to the fact that, eventually, every node agrees on the same

list of transactions
▶ but nothing is said about the actual order that is agreed upon

Order-related fairness properties for distributed ledgers:
▶ pertinent (frontrunning/sandwich attack → MEV bots1)
▶ only recently formalized (2020 paper)
▶ not upheld by most existing protocols

1∼675 million$ gains on Ethereum alone between 2020 and 2022 forbes.com/sites/jeffkauflin/
2022/10/11/the-secretiveworld-of-mev-where-crypto-bots-scalp-investors-for-big-profits/

Adversarial Simulations of Distributed Ledgers January 18, 2024 7/30

forbes.com/sites/jeffkauflin/2022/10/11/the-secretiveworld-of-mev-where-crypto-bots-scalp-investors-for-big-profits/
forbes.com/sites/jeffkauflin/2022/10/11/the-secretiveworld-of-mev-where-crypto-bots-scalp-investors-for-big-profits/

Distributed Ledgers & Order Fairness ; Order fairness

Definition of order fairness

Given n nodes and any two pairs (t, t′) of delivered transactions, before(t, t′) counts
the number of times, across all n nodes, that t is received before t′ and:

▶ receive-order fairness :=
if before(t, t′) > n/2 then t must be delivered before t′

▶ block-order fairness :=
if before(t, t′) > n/2 then t must not be delivered in a block after that in
which t′ is delivered

▶ differential-order fairness :=
if before(t, t′)− before(t′, t) > 2 ∗ f with f a specific Byzantine threshold,
then t must be delivered before t′

Order-Fairness for Byzantine Consensus
- Kelkar, Zhang, Goldfeder & Juels - CRYPTO 2020

Quick Order Fairness
- Cachin, Micic, Steinhauer & Zanolini - FC 2022

Adversarial Simulations of Distributed Ledgers January 18, 2024 8/30

Distributed Ledgers & Order Fairness ; Order fairness

Motivation for empirical evaluation & simulation

Theoretically:
▶ receive-order fairness is impossible to uphold
▶ block-order fairness only considered in Aequitas [Kelkar et al - CRYPTO 2020]

▶ differential-order fairness only considered in algo from [Cachin et al - FC 2022]

In practice:
▶ no protocols used in the industry consider order-fairness
▶ how to evaluate vulnerabilities related to these properties ?

Adversary-augmented simulation:
▶ scalable w.r.t. system and properties
▶ fine-grained parameterization of system and attacker
▶ observation of attack effects

Adversarial Simulations of Distributed Ledgers January 18, 2024 9/30

Adversary-Augmented Simulation

Adversary-Augmented Simulation

Adversarial Simulations of Distributed Ledgers January 18, 2024 10/30

Adversary-Augmented Simulation ; Adversary model

The Adversary

An external (w.r.t. the system) entity char-
acterized by:
▶ its assumptions
▶ its goals
▶ and its capabilities

The role of the adversary model in applied security research

- Do, Martini & Choo - Computers & Security vol 81 2019

Adversarial Simulations of Distributed Ledgers January 18, 2024 11/30

Adversary-Augmented Simulation ; Adversary model

Our adversary model

Assumptions Goals Capabilities
Environment (system & assumptions):

- Communication Model

- Failure Model

Resources (binding capabilities):

- Available Information

- Limited budget w.r.t. resources

property

violation
adversarial actions

Adversarial Simulations of Distributed Ledgers January 18, 2024 12/30

Adversary-Augmented Simulation ; Adversary model

Adversarial actions

▶ listen : network eavesdropping, sniffing, snooping
▶ reveal : access with read permission, side-channel, memory scanning
▶ skip & delay : Denial of Service, man-in-the-middle (control over

infrastructure)
▶ inject : admin access, code-injection (buffer overflow etc.)

Adversarial Simulations of Distributed Ledgers January 18, 2024 13/30

Adversary-Augmented Simulation ; Adversary model

Enabled actions w.r.t. assumptions

Also limited w.r.t. resources assumptions
(e.g., related to Byzantine thresholds i.e., cannot apply actions to

more than f distinct nodes)

Adversarial Simulations of Distributed Ledgers January 18, 2024 14/30

Use case

Use case

Adversarial Simulations of Distributed Ledgers January 18, 2024 15/30

Use case ; Application layer & goal of the adversary

Application layer & goal of the adversary
Let us consider a use case with clients competing to solve successive puzzles:

▶ a new puzzle is revealed regularly
▶ upon solving a puzzle, a client sends a transaction with the solution
▶ for any given puzzle, the first delivered transaction that contains its solution

determines the winner
In a concrete execution, over g repeated puzzles:

▶ if %g(c) denotes the percentage of games won by client c
▶ and if nc denotes the number of clients
▶ then, supposing all clients have the same aptitude, the game is client-fair iff

%g(c) converges towards 1
nc

as g increases

Goal: score(c) = nc ∗%g(c)
converges to value < 1 − ε
for a specific target client c

e.g.:
ϕ = (g > 1500) ∧ (score(c) < 0.75)

Adversarial Simulations of Distributed Ledgers January 18, 2024 16/30

Use case ; The system

Hyperledger Fabric with Tendermint

https://www.hyperledger.org/projects/fabric

Adversarial Simulations of Distributed Ledgers January 18, 2024 17/30

https://www.hyperledger.org/projects/fabric

Use case ; The system

Rough sketch of Tendermint

https://tendermint.com

Adversarial Simulations of Distributed Ledgers January 18, 2024 18/30

https://tendermint.com

Use case ; The system

Parameterization

▶ 3 clients
▶ 55 = 3 ∗ 18 + 1 orderers
▶ 50 peers (25 required

endorsements)
▶ a new puzzle reveal every 10 ticks
▶ solvable in at most 5 ticks by each

client
▶ baseline communications delays

distribution (see right)

Adversarial Simulations of Distributed Ledgers January 18, 2024 19/30

Use case ; Delay attack

Delay attack principle

Adversarial Simulations of Distributed Ledgers January 18, 2024 20/30

Use case ; Delay attack

Delay attack results

Adversarial Simulations of Distributed Ledgers January 18, 2024 21/30

Use case ; Peer sabotage

Peer sabotage principle

Adversarial Simulations of Distributed Ledgers January 18, 2024 22/30

Use case ; Peer sabotage

Peer sabotage principle
Pp(t < z) := probability that the client receives an endorsement from peer p for
transaction t before timestamp z

If i.i.d. variables we have a X such that ∀p ∈ Sp , Pp(t < z) = X and
Pp(t ≥ z) = 1 − X

Among np trials, the probability of having exactly k ≤ np peers endorsing t before z is:

P(k endorsement < z) =
(np
k

)
∗ X k ∗ (1 − X)np−k

Given bp ≤ np − mp the number of sabotaged
peers, the probability Y of having at least mp ≤ np
distinct endorsements before z is:

Y =

np−bp∑
k=mp

(np − bp

k

)
∗ X k ∗ (1 − X)np−bp−k

Adversarial Simulations of Distributed Ledgers January 18, 2024 23/30

Use case ; Peer sabotage

Peer sabotage results

Adversarial Simulations of Distributed Ledgers January 18, 2024 24/30

Use case ; Orderer sabotage

Orderer sabotage principle

Adversarial Simulations of Distributed Ledgers January 18, 2024 25/30

Use case ; Orderer sabotage

Orderer sabotage results

Adversarial Simulations of Distributed Ledgers January 18, 2024 26/30

Use case ; Orderer sabotage

Peer & orderer sabotage results

Adversarial Simulations of Distributed Ledgers January 18, 2024 27/30

Conclusion

Resources

WIP article:
▶ https://arxiv.org/abs/2403.14342

MAX code & means to reproduce the experiments:
▶ adversarial model in P2P layer : https://gitlab.com/cea-licia/max/

models/networks/max.model.network.stochastic_adversarial_p2p
▶ distributed ledger interface and puzzle use case : https://gitlab.com/

cea-licia/max/models/ledgers/max.model.ledger.abstract_ledger
▶ Tendermint model : https://gitlab.com/cea-licia/max/models/ledgers/

max.model.ledger.simplemint
▶ HF model : https://gitlab.com/cea-licia/max/models/ledgers/max.

model.ledger.simplefabric
▶ experiments : https://gitlab.com/cea-licia/max/models/experiments/

max.model.experiment.fabric_tendermint_client_fairness_attack

Adversarial Simulations of Distributed Ledgers January 18, 2024 28/30

https://arxiv.org/abs/2403.14342
https://gitlab.com/cea-licia/max/models/networks/max.model.network.stochastic_adversarial_p2p
https://gitlab.com/cea-licia/max/models/networks/max.model.network.stochastic_adversarial_p2p
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.abstract_ledger
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.abstract_ledger
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.simplemint
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.simplemint
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.simplefabric
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.simplefabric
https://gitlab.com/cea-licia/max/models/experiments/max.model.experiment.fabric_tendermint_client_fairness_attack
https://gitlab.com/cea-licia/max/models/experiments/max.model.experiment.fabric_tendermint_client_fairness_attack

Conclusion

Conclusion

Contributions:
▶ an adversary model for multi-agent simulation of attacks on

distributed protocols
▶ implementation in a simulator
▶ design & implementations of attacks on client-fairness on HF
▶ evaluation of impact on order fairness

Adversarial Simulations of Distributed Ledgers January 18, 2024 29/30

Conclusion

Thank you for your attention
Any questions ?

Adversarial Simulations of Distributed Ledgers January 18, 2024 30/30

	Distributed Ledgers & Order Fairness
	Preliminaries
	Distributed Ledgers
	Order fairness

	Adversary-Augmented Simulation
	Motivation
	Adversary model

	Use case
	Application layer & goal of the adversary
	The system
	Delay attack
	Peer sabotage
	Orderer sabotage

	Conclusion

