
Epistemic Verification of Information-Flow
Properties in Programs

Ioana Boureanu
Director of Surrey Centre for Cyber Security, UK

joint work @ IJCAI 2017, AAAI 2023, FM 2023, ….

with N. Gorogiannis (Facebook)
F. Raimondi (Gran Sasso Science Institute)
F. Belardinelli (Imperial College London)
V. Malvone (Télécom Paris)
F. Rajaona (Univ. of Surrey)

About me
Ø PhD in non-classical logics for (security) verification à

Ø Post-doc in security and cryptography à

Ø …

Ø Post-doc in security verification & provable security à

Ø …

Ø Professor in secure systems -->

My work:
Ø Formal methods
Ø Provable Security / Formal Verification
Ø Applied Cryptography

Today: FM for
non-cryptographic
“privacy”

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

Aim
► be able to verify information-flow or privacy-like properties of

concurrent programs or threads

► threads can OBSERVE certain program variables and not
necessarily the same

► Thread1 observes variable x; Thread2 observes variable y
► But the programme does x:= y+ 5 … somewhere
► Thread1 and Thread2 often may know the full program, or at

least their program
► So, what does Thread1 know/learn about variable y?

What does Thread1 know/learn about Thread2 knowing or
doing something on variable y?

► This is fine… seems well-known …akin to .. non-interference,
information-flow..

Aim
► Thread1 observes variable x; Thread2 observes variable y

► So, what does Thread1 know/learn about y? …
► This is fine…, well-known even, non-interference, information-

flow..
► But, ..

► NOT for “high-level” programs
OR

► NOT expressive in the sense meant
where… “ what does Thread1 learn …

aboutThread2 doing/knowing…?”

► Logic formulae expressing properties about program states: e.g.,

“Thread1 knows that variable x is equal to y + 5”
“Thread2 does not know that variable x is equal to y + 5”

What expressivity we mean?

► epistemic logics, i.e., logics of knowledge – “knowing logical
facts” → expressions of rich properties (e.g., information
flow, non-interference)

► well-used in verification of general-purpose concurrent &
distributed SYSTEMS (e.g., Byzantine agreement) via epistemic
model checkers such as MCMAS, Verics, MCK, etc....

Hmmm ...
► epistemic logics well-used in systems’ model checkers

systems BUT...

► :(these are NOT epistemic specifications on programs (like we mean here)

► :(it is hard to capture rich (e.g., first-order) state specifications,
since the base logic of most epistemic verifiers is propositional

... meanwhile, base logics of programs are VERY expressive

► predicate transformers (e.g., weakest precondition) are used to reduce
verification to FO queries to SMT solvers ...i.e., away from model-checking

Back to our aim
► be able to verify information-flow or non-interference properties of

concurrent programs or threads, under their partial observability

► Focus on rich epistemic properties
over program states: e.g.,

“Thread1 knows that when program C will
executeThread2 knows variable x is
equal to y + 5”

► Q: Can we harness
SMT solving’ or shall
we rely on epistemic
model checking?

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

Syntax Setup

►A
►V
► p ⊆ V
► oA ⊆ p
► nA = p \ oA

a finite set of threads or program-observers
a countable set of variables

a non-empty set of program variables
the variables the thread A ∈ A can observe

variables thread A ∈ A cannot observe

Syntax First Epistemic Language LK
[IJCAI’17]

►LQF base language = a quantifier-free, FO language

φ :: = π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ∀x. φ | ∃x. φ

►LK extension of LQF with epistemic modalities KA

α ::= π | ¬α | α1 ∧ α2 | α1 ∨ α2 | α1 ⇒ α2 | KAα

►LFO extension of LQF with quantifiers

First Program-Epistemic Specifications L□K

►C a (possibly infinite) set of commands
►L□K extends LK with every formula β = □Cα,

meaning “at all final states of C, α holds”

Example
“at the end of the vote-counting, a partial-observing thread thread1
(who can see certain aspects of the program) does not know that
voter 1 vote for candidate 1”:

□!"#$%&'()#')*+ ¬𝐾$,)-*./𝑉/,/

where V1,1 is a formula in LQF which here is linear integer arithmetic.

First-order Semantics
First-order Semantics

I state s : V ! D.
I set of all states U

s |= ⇡ () in accordance to interpretation I

s |= �1 � �2 () (s |= �1) � (s |= �2)
s |= ¬� () s 6|= �
s |= 9x .� () 9c 2 D. s[x 7! c] |= �
s |= 8x .� () 8c 2 D. s[x 7! c] |= �.

where � is ^, _ or), and I is an interpretation of constants,
functions and predicates in LQF over the domain D.

The interpretation J�K of a first-order formula � is the set of
states satisfying it, i.e., J�K = {s 2 U | s |= �}

First-order Semantics

I state s : V ! D.
I set of all states U

s |= ⇡ () in accordance to interpretation I

s |= �1 � �2 () (s |= �1) � (s |= �2)
s |= ¬� () s 6|= �
s |= 9x .� () 9c 2 D. s[x 7! c] |= �
s |= 8x .� () 8c 2 D. s[x 7! c] |= �.

where � is ^, _ or), and I is an interpretation of constants,
functions and predicates in LQF over the domain D.

The interpretation J�K of a first-order formula � is the set of
states satisfying it, i.e., J�K = {s 2 U | s |= �}

Towards a Program-Epistemic Semantics

Towards a Program-Epistemic Semantics

I Indistinguishability relation ⇠X over states

s ⇠X s
0 () 8x 2 X . (s(x) = s

0(x)),

where X ✓ V
I Transition relation (over states) of any command C

RC(s) = {s
0 | (s, s0) 2 RC} RC(W) =

S
s2W

RC(s)

I strongest postcondition operator is a partial function
SP(�,�) : LFO ⇥ C * LFO

SP(�,C) = iff J K = RC(J�K)

Towards a Program-Epistemic Semantics

I Indistinguishability relation ⇠X over states

s ⇠X s
0 () 8x 2 X . (s(x) = s

0(x)),

where X ✓ V
I Transition relation (over states) of any command C

RC(s) = {s
0 | (s, s0) 2 RC} RC(W) =

S
s2W

RC(s)

I strongest postcondition operator is a partial function
SP(�,�) : LFO ⇥ C * LFO

SP(�,C) = iff J K = RC(J�K)

Interpretation of a program specification βInterpretation of a program specification �
The satisfaction relation W , s � �

W , s � ⇡ () s |= ⇡
W , s � ¬↵ () W , s 6� ↵
W , s � ↵1 � ↵2 () (W , s � ↵1) � (W , s � ↵2)
W , s � KA↵ () 8s0 2 W . (s ⇠oA

s0 =) W , s0 � ↵)
W , s � ⇤C↵ () 8s0 2 RC(s). (RC(W), s0 � ↵)

where � is ^, _, or), and C 2 C is a command.

I Validity of program specifications � � �
for all s 2 J�K, we have that J�K, s � �.

� � KA⇡ means that in all states satisfying �, agent A knows ⇡

� � ⇤C¬KA⇡ means: if command C starts at a state satisfying
�, then in all states where the execution finishes, agent A does
not know ⇡

Interpretation of a program specification �
The satisfaction relation W , s � �

W , s � ⇡ () s |= ⇡
W , s � ¬↵ () W , s 6� ↵
W , s � ↵1 � ↵2 () (W , s � ↵1) � (W , s � ↵2)
W , s � KA↵ () 8s0 2 W . (s ⇠oA

s0 =) W , s0 � ↵)
W , s � ⇤C↵ () 8s0 2 RC(s). (RC(W), s0 � ↵)

where � is ^, _, or), and C 2 C is a command.

I Validity of program specifications � � �
for all s 2 J�K, we have that J�K, s � �.

� � KA⇡ means that in all states satisfying �, agent A knows ⇡

� � ⇤C¬KA⇡ means: if command C starts at a state satisfying
�, then in all states where the execution finishes, agent A does
not know ⇡

Interpretation of a program specification �
The satisfaction relation W , s � �

W , s � ⇡ () s |= ⇡
W , s � ¬↵ () W , s 6� ↵
W , s � ↵1 � ↵2 () (W , s � ↵1) � (W , s � ↵2)
W , s � KA↵ () 8s0 2 W . (s ⇠oA

s0 =) W , s0 � ↵)
W , s � ⇤C↵ () 8s0 2 RC(s). (RC(W), s0 � ↵)

where � is ^, _, or), and C 2 C is a command.

I Validity of program specifications � � �
for all s 2 J�K, we have that J�K, s � �.

� � KA⇡ means that in all states satisfying �, agent A knows ⇡

� � ⇤C¬KA⇡ means: if command C starts at a state satisfying
�, then in all states where the execution finishes, agent A does
not know ⇡

means that in all states satisfying 𝜙, thread A knows 𝜋

means that if command C starts at a state satisfying 𝜙,
then in all states where the execution finishes,
thread A does not know 𝜋

Interpretation of a program specification �
The satisfaction relation W , s � �

W , s � ⇡ () s |= ⇡
W , s � ¬↵ () W , s 6� ↵
W , s � ↵1 � ↵2 () (W , s � ↵1) � (W , s � ↵2)
W , s � KA↵ () 8s0 2 W . (s ⇠oA

s0 =) W , s0 � ↵)
W , s � ⇤C↵ () 8s0 2 RC(s). (RC(W), s0 � ↵)

where � is ^, _, or), and C 2 C is a command.

I Validity of program specifications � � �
for all s 2 J�K, we have that J�K, s � �.

� � KA⇡ means that in all states satisfying �, agent A knows ⇡

� � ⇤C¬KA⇡ means: if command C starts at a state satisfying
�, then in all states where the execution finishes, agent A does
not know ⇡

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

First Reduction to First-Order Validity

Reducing to First-Order Validity

I Recall: strongest postcondition operator is a partial
function SP(�,�) : LFO ⇥ C * LFO

SP(�,C) = iff J K = RC(J�K)

If the strongest postcondition operator is computable for the
chosen base logic/programming language, then validity of
program-epistemic specifications reduces to validity in
first-order fragments (such as QBF and Presburger arithmetic).

... a translation ⌧ : LK ! LFO of epistemic formulas into the first-order language.

⌧(�,⇡) = ⇡ ⌧(�,↵1 � ↵2)= ⌧(�,↵1) � ⌧(�,↵2)
⌧(�,¬↵)= ¬⌧(�,↵) ⌧(�, KA↵) = 8nA. (�) ⌧(�,↵))

Reducing to First-Order Validity

I Recall: strongest postcondition operator is a partial
function SP(�,�) : LFO ⇥ C * LFO

SP(�,C) = iff J K = RC(J�K)

If the strongest postcondition operator is computable for the
chosen base logic/programming language, then validity of
program-epistemic specifications reduces to validity in
first-order fragments (such as QBF and Presburger arithmetic).

... a translation ⌧ : LK ! LFO of epistemic formulas into the first-order language.

⌧(�,⇡) = ⇡ ⌧(�,↵1 � ↵2)= ⌧(�,↵1) � ⌧(�,↵2)
⌧(�,¬↵)= ¬⌧(�,↵) ⌧(�, KA↵) = 8nA. (�) ⌧(�,↵))

Recall my questio
n re

model checking vs

SMT solving?

Reducing to First-Order Validity

I Recall: strongest postcondition operator is a partial
function SP(�,�) : LFO ⇥ C * LFO

SP(�,C) = iff J K = RC(J�K)

If the strongest postcondition operator is computable for the
chosen base logic/programming language, then validity of
program-epistemic specifications reduces to validity in
first-order fragments (such as QBF and Presburger arithmetic).

... a translation ⌧ : LK ! LFO of epistemic formulas into the first-order language.

⌧(�,⇡) = ⇡ ⌧(�,↵1 � ↵2)= ⌧(�,↵1) � ⌧(�,↵2)
⌧(�,¬↵)= ¬⌧(�,↵) ⌧(�, KA↵) = 8nA. (�) ⌧(�,↵))

Reducing to First-Order Validity

I Recall: strongest postcondition operator is a partial
function SP(�,�) : LFO ⇥ C * LFO

SP(�,C) = iff J K = RC(J�K)

If the strongest postcondition operator is computable for the
chosen base logic/programming language, then validity of
program-epistemic specifications reduces to validity in
first-order fragments (such as QBF and Presburger arithmetic).

... a translation ⌧ : LK ! LFO of epistemic formulas into the first-order language.

⌧(�,⇡) = ⇡ ⌧(�,↵1 � ↵2)= ⌧(�,↵1) � ⌧(�,↵2)
⌧(�,¬↵)= ¬⌧(�,↵) ⌧(�, KA↵) = 8nA. (�) ⌧(�,↵))

Interpretation of a program specification �
The satisfaction relation W , s � �

W , s � ⇡ () s |= ⇡
W , s � ¬↵ () W , s 6� ↵
W , s � ↵1 � ↵2 () (W , s � ↵1) � (W , s � ↵2)
W , s � KA↵ () 8s0 2 W . (s ⇠oA

s0 =) W , s0 � ↵)
W , s � ⇤C↵ () 8s0 2 RC(s). (RC(W), s0 � ↵)

where � is ^, _, or), and C 2 C is a command.

I Validity of program specifications � � �
for all s 2 J�K, we have that J�K, s � �.

� � KA⇡ means that in all states satisfying �, agent A knows ⇡

� � ⇤C¬KA⇡ means: if command C starts at a state satisfying
�, then in all states where the execution finishes, agent A does
not know ⇡

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

Loop-Free Example Programming Language
Simple, Loop-Free Programming Language

Command C SP(�,C)

x := ⇤ 9y .�[y/x]
x := e 9y . (x = e[y/x] ^ �[y/x])
if(⇡) C1 else C2 SP(⇡ ^ �,C1) _ SP(¬⇡ ^ �,C2)
C1;C2 SP(SP(�,C1),C2),

where x is a program variable and y is a fresh logical variable.

I SP(�,�) may only introduce existential quantifiers.
I If x /2 FV (�), then SP(�, x := e) = (� ^ x = e). That is, if x

is unrestricted, no quantifiers are introduced.
I For a fixed C, the size of SP(�,C) is polynomial in k�k.

Simple, Loop-Free Programming Language

Command C SP(�,C)

x := ⇤ 9y .�[y/x]
x := e 9y . (x = e[y/x] ^ �[y/x])
if(⇡) C1 else C2 SP(⇡ ^ �,C1) _ SP(¬⇡ ^ �,C2)
C1;C2 SP(SP(�,C1),C2),

where x is a program variable and y is a fresh logical variable.

I SP(�,�) may only introduce existential quantifiers.
I If x /2 FV (�), then SP(�, x := e) = (� ^ x = e). That is, if x

is unrestricted, no quantifiers are introduced.
I For a fixed C, the size of SP(�,C) is polynomial in k�k.

• Enough to express .. somewhat… simple communication
protocols, anonymity-driven systems, knowledge
proofs…

Three Ballot Voting • for a candidate, exactly two
atomic ballots.

• against a candidate, exactly
one atomic ballot.

Here:
• Vote privacy
• No active attacker

Three Ballot Specifications
• m > 2 candidates

n  > 2 voters

• LQF linear integer arithmetic

• Threads A = {1, .., n; P}: voters + P is a ‘public observer’/ general program
• Program variables

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

• Observable variables

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

• Non-observable variables

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

• Vote Counting (the number of ticks voter i has entered
for candidate j)

• Program C

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

• LQF Presburger arithmetic

cj total number of atomic-
ballot ticks for candidate j

bijk if voter i ticked next to candidate j
on the k-th atomic ballot

Three Ballot Specifications (cont’d)
• Macros to model the protocol

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20
Ti

m
e

(s
ec

)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

Initial states

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

Non-unanimity

Voting for at
least and at
most a
candidate

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

Three Ballot Specifications (cont’d)

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

the observer P does not know that voter 1 voted for candidate 1

voter 1 does not know that voter 2 voted for candidate 1

not know that voter 2 voted for candidate 1. We verify the
following scenarios: (a) I � ⇤C↵1; (b) Imod 1 � ⇤C↵2; and,
(c) I 6� ⇤C↵2. We construct the relevant Presburger formulas
obtained by Theorem 3.3, and issue the queries to Z3.

We make the following observations. With a timeout of
roughly 1h, for m = 2 candidates, we can verify all formulas
for up to n = 22 voters. For m = 3, we can check the speci-
fications up to n = 15. For m = 5, we stop at n = 11. Run-
time is evidently exponential in both n and m. Increasing m
rather than n has a more pronounced impact on verification
runtime; this is apparent on the graphs, as different formu-
las for the same m value cluster together. Finally, disproof
(i.e., ↵3) seems to be more tractable when m = 2.

5 Related Work

Several model checkers exist for model verification against
properties expressed in temporal-epistemic logics [?; ?; ?].
Their underlying techniques include binary decision dia-
grams, automata, and bounded model checking using SAT
solvers. Abstraction and parametrisation have also been in-
troduced in some of these tools, to tackle infinite-state sys-
tems [?; ?]. A fix-point technique for verifying bounds on
resources in multi-agent systems using SMT solvers is de-
scribed in [?]. As per Section 4, we generally outperform
significantly MCMAS [?], a state-of-the-art tool in this do-
main.

Verification of epistemic properties in (possibly) infinite
state systems is also addressed in [?]. The authors employ a
counter-example guided abstraction refinement loop to trans-
late a class of temporal-epistemic properties to LTL proper-
ties, and to generate a satisfiability problem for an infinite-
state model checker. Beside the core technique, the key dif-
ferences between [?] and our approach are three-fold. (1) Our
input is a program in a general-purpose language rather than
the model of a system. (2) We can handle nested epistemic
operators (but our temporal expressivity is limited to the fi-
nal states of programs). (3) Our approach performs better on
the epistemic properties of the dining cryptographers that can
be expressed both by our framework and by [?]: for the for-
mula p0) K0(¬

Wn�1
i=1 pi), the authors report running times

of 287, 598 and 765 seconds for 280, 360 and 400 cryptog-
raphers, respectively; in all cases, this formula is checked in
less than 1 second in our framework.

Verification of programs against properties expressed in
(temporal-)epistemic logics is a less explored area of research
compared to model-based verification. Going back some
decades, the verification of epistemic properties for a LISP-
like language called REX was investigated in [?]; the authors
employed a variant of LTL+K and presented a calculus to
prove logical consequences of a REX program. On a slightly
different path, [?; ?] addressed the theoretical problem of ex-
tending (declarative) programming languages with epistemic
operators. More recently, the approach described in [?] ver-
ifies whether Java programs respect non-interference proper-
ties (modulo declassification), given as epistemic formulae.
The authors employ a version of the model checker JPF [?]
to generate the state space of a Java program and then ei-
ther MCMAS or Z3 to verify a symbolic representation of

the reachable state-space. The key differences between [?]
and our approach stem from their focus on non-interference
properties and the need of a concolic execution engine. Fi-
nally, dynamic epistemic logic [?] lends itself to the expres-
sion of epistemic properties of programs; preliminary work
on a verification tool in this space is described in [?].

6 Conclusions

In this paper, we proposed a new approach to verifying epis-
temic properties of programs. We showed how this method
can be applied to arbitrary logics and programming lan-
guages. We use program-epistemic specifications, express-
ing the requirement that the given epistemic properties hold
on all final states of the program. We showed how program-
epistemic specifications can be reduced to appropriate queries
to tools such as SMT solvers. We instantiated our approach
in two case studies, the Dining Cryptographers problem and
the ThreeBallot voting protocol, and experimentally evalu-
ated verification performance.

For any given instantiation of our framework, the trans-
lation of program-epistemic properties into first-order sen-
tences can be automated with great ease. In addition, we ex-
pect that advances in SMT technology will directly translate
into performance gains for tools based on our methodology.

Our approach is not, of course, without limitations. We
traded off temporal expressivity, to deal with arbitrary pro-
gramming languages. Thus we cannot directly encode prop-
erties utilising, e.g., until operators or other complex tempo-
ral properties. This is a research direction we plan to pur-
sue, drawing inspiration from attempts to lift infinite-state
program verification to the verification of true temporal prop-
erties [?].

Common-knowledge properties are outside the current
reach of our approach. We plan to investigate an extension of
our framework that can deal with common knowledge, pos-
sibly by viewing it as a fixpoint and using cyclic proof to
discharge its instances [?].

Another limitation is the restriction to positive epistemic
properties (L+

K) when the strongest postcondition is not well-
behaved (cf. Theorem 3.5). To lift this limitation, we believe
that static analysis methods such as abstract interpretation

[?] can be fruitfully employed here, especially when over-
and under-approximating analyses are combined. We plan to
follow this thread in future work.

Another avenue of future work is a twofold extension of
the work in [?] which, one, focused on SAT solvers and, two,
analysed only trace-based properties of systems. To this end,
we will look into embedding different security semantics into
our methodology and thus move towards the verification of
privacy and anonymity properties of programs with a security
bearing (e.g., reference implementations of cryptographically
rich e-voting protocols).

not know that voter 2 voted for candidate 1. We verify the
following scenarios: (a) I � ⇤C↵1; (b) Imod 1 � ⇤C↵2; and,
(c) I 6� ⇤C↵2. We construct the relevant Presburger formulas
obtained by Theorem 3.3, and issue the queries to Z3.

We make the following observations. With a timeout of
roughly 1h, for m = 2 candidates, we can verify all formulas
for up to n = 22 voters. For m = 3, we can check the speci-
fications up to n = 15. For m = 5, we stop at n = 11. Run-
time is evidently exponential in both n and m. Increasing m
rather than n has a more pronounced impact on verification
runtime; this is apparent on the graphs, as different formu-
las for the same m value cluster together. Finally, disproof
(i.e., ↵3) seems to be more tractable when m = 2.

5 Related Work

Several model checkers exist for model verification against
properties expressed in temporal-epistemic logics [?; ?; ?].
Their underlying techniques include binary decision dia-
grams, automata, and bounded model checking using SAT
solvers. Abstraction and parametrisation have also been in-
troduced in some of these tools, to tackle infinite-state sys-
tems [?; ?]. A fix-point technique for verifying bounds on
resources in multi-agent systems using SMT solvers is de-
scribed in [?]. As per Section 4, we generally outperform
significantly MCMAS [?], a state-of-the-art tool in this do-
main.

Verification of epistemic properties in (possibly) infinite
state systems is also addressed in [?]. The authors employ a
counter-example guided abstraction refinement loop to trans-
late a class of temporal-epistemic properties to LTL proper-
ties, and to generate a satisfiability problem for an infinite-
state model checker. Beside the core technique, the key dif-
ferences between [?] and our approach are three-fold. (1) Our
input is a program in a general-purpose language rather than
the model of a system. (2) We can handle nested epistemic
operators (but our temporal expressivity is limited to the fi-
nal states of programs). (3) Our approach performs better on
the epistemic properties of the dining cryptographers that can
be expressed both by our framework and by [?]: for the for-
mula p0) K0(¬

Wn�1
i=1 pi), the authors report running times

of 287, 598 and 765 seconds for 280, 360 and 400 cryptog-
raphers, respectively; in all cases, this formula is checked in
less than 1 second in our framework.

Verification of programs against properties expressed in
(temporal-)epistemic logics is a less explored area of research
compared to model-based verification. Going back some
decades, the verification of epistemic properties for a LISP-
like language called REX was investigated in [?]; the authors
employed a variant of LTL+K and presented a calculus to
prove logical consequences of a REX program. On a slightly
different path, [?; ?] addressed the theoretical problem of ex-
tending (declarative) programming languages with epistemic
operators. More recently, the approach described in [?] ver-
ifies whether Java programs respect non-interference proper-
ties (modulo declassification), given as epistemic formulae.
The authors employ a version of the model checker JPF [?]
to generate the state space of a Java program and then ei-
ther MCMAS or Z3 to verify a symbolic representation of

the reachable state-space. The key differences between [?]
and our approach stem from their focus on non-interference
properties and the need of a concolic execution engine. Fi-
nally, dynamic epistemic logic [?] lends itself to the expres-
sion of epistemic properties of programs; preliminary work
on a verification tool in this space is described in [?].

6 Conclusions

In this paper, we proposed a new approach to verifying epis-
temic properties of programs. We showed how this method
can be applied to arbitrary logics and programming lan-
guages. We use program-epistemic specifications, express-
ing the requirement that the given epistemic properties hold
on all final states of the program. We showed how program-
epistemic specifications can be reduced to appropriate queries
to tools such as SMT solvers. We instantiated our approach
in two case studies, the Dining Cryptographers problem and
the ThreeBallot voting protocol, and experimentally evalu-
ated verification performance.

For any given instantiation of our framework, the trans-
lation of program-epistemic properties into first-order sen-
tences can be automated with great ease. In addition, we ex-
pect that advances in SMT technology will directly translate
into performance gains for tools based on our methodology.

Our approach is not, of course, without limitations. We
traded off temporal expressivity, to deal with arbitrary pro-
gramming languages. Thus we cannot directly encode prop-
erties utilising, e.g., until operators or other complex tempo-
ral properties. This is a research direction we plan to pur-
sue, drawing inspiration from attempts to lift infinite-state
program verification to the verification of true temporal prop-
erties [?].

Common-knowledge properties are outside the current
reach of our approach. We plan to investigate an extension of
our framework that can deal with common knowledge, pos-
sibly by viewing it as a fixpoint and using cyclic proof to
discharge its instances [?].

Another limitation is the restriction to positive epistemic
properties (L+

K) when the strongest postcondition is not well-
behaved (cf. Theorem 3.5). To lift this limitation, we believe
that static analysis methods such as abstract interpretation

[?] can be fruitfully employed here, especially when over-
and under-approximating analyses are combined. We plan to
follow this thread in future work.

Another avenue of future work is a twofold extension of
the work in [?] which, one, focused on SAT solvers and, two,
analysed only trace-based properties of systems. To this end,
we will look into embedding different security semantics into
our methodology and thus move towards the verification of
privacy and anonymity properties of programs with a security
bearing (e.g., reference implementations of cryptographically
rich e-voting protocols).

not know that voter 2 voted for candidate 1. We verify the
following scenarios: (a) I � ⇤C↵1; (b) Imod 1 � ⇤C↵2; and,
(c) I 6� ⇤C↵2. We construct the relevant Presburger formulas
obtained by Theorem 3.3, and issue the queries to Z3.

We make the following observations. With a timeout of
roughly 1h, for m = 2 candidates, we can verify all formulas
for up to n = 22 voters. For m = 3, we can check the speci-
fications up to n = 15. For m = 5, we stop at n = 11. Run-
time is evidently exponential in both n and m. Increasing m
rather than n has a more pronounced impact on verification
runtime; this is apparent on the graphs, as different formu-
las for the same m value cluster together. Finally, disproof
(i.e., ↵3) seems to be more tractable when m = 2.

5 Related Work

Several model checkers exist for model verification against
properties expressed in temporal-epistemic logics [?; ?; ?].
Their underlying techniques include binary decision dia-
grams, automata, and bounded model checking using SAT
solvers. Abstraction and parametrisation have also been in-
troduced in some of these tools, to tackle infinite-state sys-
tems [?; ?]. A fix-point technique for verifying bounds on
resources in multi-agent systems using SMT solvers is de-
scribed in [?]. As per Section 4, we generally outperform
significantly MCMAS [?], a state-of-the-art tool in this do-
main.

Verification of epistemic properties in (possibly) infinite
state systems is also addressed in [?]. The authors employ a
counter-example guided abstraction refinement loop to trans-
late a class of temporal-epistemic properties to LTL proper-
ties, and to generate a satisfiability problem for an infinite-
state model checker. Beside the core technique, the key dif-
ferences between [?] and our approach are three-fold. (1) Our
input is a program in a general-purpose language rather than
the model of a system. (2) We can handle nested epistemic
operators (but our temporal expressivity is limited to the fi-
nal states of programs). (3) Our approach performs better on
the epistemic properties of the dining cryptographers that can
be expressed both by our framework and by [?]: for the for-
mula p0) K0(¬

Wn�1
i=1 pi), the authors report running times

of 287, 598 and 765 seconds for 280, 360 and 400 cryptog-
raphers, respectively; in all cases, this formula is checked in
less than 1 second in our framework.

Verification of programs against properties expressed in
(temporal-)epistemic logics is a less explored area of research
compared to model-based verification. Going back some
decades, the verification of epistemic properties for a LISP-
like language called REX was investigated in [?]; the authors
employed a variant of LTL+K and presented a calculus to
prove logical consequences of a REX program. On a slightly
different path, [?; ?] addressed the theoretical problem of ex-
tending (declarative) programming languages with epistemic
operators. More recently, the approach described in [?] ver-
ifies whether Java programs respect non-interference proper-
ties (modulo declassification), given as epistemic formulae.
The authors employ a version of the model checker JPF [?]
to generate the state space of a Java program and then ei-
ther MCMAS or Z3 to verify a symbolic representation of

the reachable state-space. The key differences between [?]
and our approach stem from their focus on non-interference
properties and the need of a concolic execution engine. Fi-
nally, dynamic epistemic logic [?] lends itself to the expres-
sion of epistemic properties of programs; preliminary work
on a verification tool in this space is described in [?].

6 Conclusions

In this paper, we proposed a new approach to verifying epis-
temic properties of programs. We showed how this method
can be applied to arbitrary logics and programming lan-
guages. We use program-epistemic specifications, express-
ing the requirement that the given epistemic properties hold
on all final states of the program. We showed how program-
epistemic specifications can be reduced to appropriate queries
to tools such as SMT solvers. We instantiated our approach
in two case studies, the Dining Cryptographers problem and
the ThreeBallot voting protocol, and experimentally evalu-
ated verification performance.

For any given instantiation of our framework, the trans-
lation of program-epistemic properties into first-order sen-
tences can be automated with great ease. In addition, we ex-
pect that advances in SMT technology will directly translate
into performance gains for tools based on our methodology.

Our approach is not, of course, without limitations. We
traded off temporal expressivity, to deal with arbitrary pro-
gramming languages. Thus we cannot directly encode prop-
erties utilising, e.g., until operators or other complex tempo-
ral properties. This is a research direction we plan to pur-
sue, drawing inspiration from attempts to lift infinite-state
program verification to the verification of true temporal prop-
erties [?].

Common-knowledge properties are outside the current
reach of our approach. We plan to investigate an extension of
our framework that can deal with common knowledge, pos-
sibly by viewing it as a fixpoint and using cyclic proof to
discharge its instances [?].

Another limitation is the restriction to positive epistemic
properties (L+

K) when the strongest postcondition is not well-
behaved (cf. Theorem 3.5). To lift this limitation, we believe
that static analysis methods such as abstract interpretation

[?] can be fruitfully employed here, especially when over-
and under-approximating analyses are combined. We plan to
follow this thread in future work.

Another avenue of future work is a twofold extension of
the work in [?] which, one, focused on SAT solvers and, two,
analysed only trace-based properties of systems. To this end,
we will look into embedding different security semantics into
our methodology and thus move towards the verification of
privacy and anonymity properties of programs with a security
bearing (e.g., reference implementations of cryptographically
rich e-voting protocols).

Vote Privacy Verification

or equally fast, for n 7, but slower for all n > 7; (ii) there
are cases where our method is faster than MCMAS by a fac-
tor of � 100 (e.g., when n = 32) when checking ↵1 (which
is the computationally most expensive in our case), whilst
when verifying ↵3 our speed-up is several orders of magni-
tudes higher.

4.2 ThreeBallot Voting Protocol

Problem description. In the ThreeBallot voting protocol [?],
a voter is given a multi-ballot formed of three atomic ballots.
All atomic ballots are identical and show all candidates in
the same fixed order. To vote for a candidate, a voter ticks
the name of the candidate on exactly two atomic ballots. To
vote against a candidate, a voter ticks the name of the candi-
date on exactly one atomic ballot. The voting system posts
all the atomic ballots cast, randomly ordered, on a public bul-
letin board. The number of votes for the j-th candidate is the
number of atomic ballots with the j-th position marked minus
the total number of voters. Several voting requirements ex-
ist: (universal) verifiability, coercion-resistance, vote-privacy,
etc. Vote-privacy broadly means that no observer in a voting
protocol can know how some voter (other than themselves)
voted. Here we only consider vote-privacy, and only in the
absence of active adversaries. As such, the presentation above
and our modelling are restricted to aspects of the ThreeBallot
protocol relevant to this task, leaving aside several sub-parts
of the system (e.g., scanning machines, identifiers on atomic
bulletins, etc). We also leave out properties that are not yet
expressible in our formalism, such as common-knowledge
properties.
Framework Instantiation. We assume m � 2 candidates
and n � 2 voters. The domain is D = N. The base lan-

guage LQF is linear integer arithmetic. The set of agents is
A = {1, . . . , n, P}, where P is a ‘public observer’ agent
(surveying all public aspects). The program variables are
p =

Sm
j=1{cj}[

Sn
i=1

Sm
j=1

S3
k=1{bijk}. Variable cj stores

the total number of atomic-ballot ticks for candidate j. Vari-
able bijk (with values in {0, 1}) represents whether or not
voter i ticked next to candidate j on the k-th atomic ballot.

For an agent i 2 A \ {P}, the observable variables are
oi =

Sm
j=1{cj} [

Sm
j=1

S3
k=1{bijk}, i.e., voter i can observe

the totals for each candidate, as well as her own vote. For
agent P , the observable variables are oP =

Sm
j=1{cj}. That

is, P only observes the totals for each candidate. For every
agent i 2 A, the non-observable variables are ni = p \ oi.

To model vote-counting, we first introduce the macro

Si,j ⌘
P3

k=1 bijk, denoting the number of ticks voter i has
entered for candidate j. Then, the program C is:

c1 :=
Pn

i=1 Si,1 ; . . . ; cm :=
Pn

i=1 Si,m (C)

The language LFO is Presburger arithmetic. For any � 2
LFO, SP(�, C) is well-behaved (Sec. 3.1). Program specifi-
cation validity is in ⌃EXP

` or ⇧EXP
` (classes of the weak expo-

nential hierarchy [?]), where ` + 1 is the sum of quantifier
alternations in � and alternations of ¬ and K in ↵.

Fig. 2b depicts a number of macros which we use in com-
posing the program specifications verified. Macro B bounds
the possible values of the entries on atomic ballots to 0 or 1,

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

(a) Performance on the 3-ballot protocol.

Si,j ⌘
P3

k=1 bijk

B⌘
Vn

i=1

Vm
j=1

V3
k=1(bijk = 0 _ bijk = 1)

Vi,j ⌘ (Si,j = 2)

V̄i,j ⌘ (Si,j = 1)

CV �0
i ⌘

Wm
j=1 Vi,j

CV 1
i ⌘

Vm
j=1

⇣
Vi,j)

Vm
j0=1,j0 6=j V̄i,j0

⌘

CV ⌘
Vn

i=1(CV �0
i ^ CV 1

i)

NU ⌘
Vm

j=1

Wn
i=1 Vi,j

NUmod i ⌘
Vm

j=1

Wn
i0=1,i0 6=i Vi0,j

I ⌘ B ^ CV ^NU

Imod i ⌘ B ^ CV ^NUmod i

(b) Macros used in the Three-Ballot system.

Figure 2: Experimental evaluation of case studies.

i.e., no tick or a tick. Macro Vi,j (resp. V̄i,j) states that voter i
voted for (resp. against) candidate j, i.e., two ticks vs one tick.
Macro CV �0

i states that voter i voted for at least one candi-
date and CV 1

i states that voter i voted for at most one candi-
date. Macro CV states that all voters voted correctly. Macro
NU states that the vote is not unanimous, as every candi-
date received at least one vote; we will require non-unanimity
to avoid trivial vote-privacy breaches. Macro NUmod i is a
variation on NU , and states that every candidate received at
least one vote from voters other than a designated voter i; we
will require this non-unanimity condition for asserting voter-
privacy relative to a voter agent. Accordingly, Fig. 2b shows
the two possible initial conditions, I and Imod i.

Thus, SP(I, C) = I^
�
c = (

Pn
i=1 Si,1, . . . ,

Pn
i=1 Si,m)

�

where c is the tuple (c1, . . . , cm), and similarly for Imod i.
Experiments. The formula ↵1 = ¬KPV1,1 states that the
public observer does not know that voter 1 voted for candi-
date 1. The formula ↵2 = ¬K1V2,1 states that voter 1 does

+
translation of K formulae

=> Presburger formulas +

Experimental Results (on a simple laptop)

More ...

I a more complicated example on the ThreeBallot voting
protocol (e.g., LFO moved from QBFs to Presburger
arithmetics.)

10�1

100

101

102

103

104

105

5 10 15 20

Ti
m

e
(s

ec
)

Number of voters

m = 2, ↵1
m = 2, ↵2
m = 2, ↵3
m = 3, ↵1
m = 3, ↵2
m = 3, ↵3
m = 5, ↵1
m = 5, ↵2
m = 5, ↵3

Other Experimental Results
105

104

103

102

101

100

10−1

10−2
0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

α1α2
α1 (MCMAαS3)

Number of cryptographers

(i) MCMAS is faster, or equally fast, for n ≤ 7, but slower for all n > 7;
(ii) we can be faster than MCMAS by a factor of > 100 (e.g., when n = 32) when checking α 1 ,
whilst when verifying α 3 our speed-up is of several orders of magnitudes.

Recall my questio
n re

model checking vs

SMT solving?

Benchmark AI systems : the Dining Cryptographers

reveal (paidi � ci � ci+1) (communicate a value)

ifKi (paidNSA)

reveal(ci � ci+1)

(make decision based on

knowledge)

One cryptographer or

the NSA paid
3/10

So, where are we?

► J we “played” with some logics, .. We gave program-epistemic
specifications, expressing requirements that given epistemic
properties hold on all final states of the program

► J we have an efficient method of reducing the validity of program-
epistemic specifications to appropriate queries to SMT solvers

► L space for improvements...
…

epistemic KA operator can appear only after program □C operator…,
we cannot have KA KB 𝝓 .. , meaning we cannot have more than one
agent “knowing”

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

Second Program-Epistemic Language

If we want the program operator and the epistemic operator to
commute, perhaps link the program language and the logic more?

Programs, e.g., assignments, leak information; perhaps, we can model this
program “leak” via logics: announcement logics [Plaza’89]

Peggy
- announces

“success on
path x1”

- announces
“success on
path x2”

- announces
“success on
path x3”

Ali-Baba’s Cave Zero Knowledge

Second Program-Epistemic Language
[FM’23]

Ø perhaps link the program language and the logic more?
Ø Announcement logics [Plaza ‘89] …

Knowledge-based programs: Syntax and Semantics

Program syntax

P ::= ↵? (test/announcement)

xG := e (assignment)

newkG · P (declare k visible to G)

P;Q (sequential composition)

P u Q (nondeterministic choice)

Logic syntax

↵ ::= ⇡ (atomic predicate)

↵ ^ ↵0 (conjunction)

¬↵ (negation)

KA↵ (knowledge modality)

[↵0]↵ (public announcement formula)

8xG · ↵ (universal quantification)

Relational semantics

RW : LP ⇥ U ! P(U)

RW (P u Q, s) = {s0[cAg 7! l] | s0 2 RW (P, s)}

[{s0[cAg 7! r] | s0 2 RW (Q, s)}

RW (P;Q, s) =
S

s02RW (P,s){RR⇤
W

(P,W)(Q, s0)}

RW (xG := e, s) = {s[kG 7! s(xG), xG 7! s(e)]}

RW (newkG · P, s) = R
⇤
W

(P, {s[kG 7! d] | d 2 D})

RW (�?, s) = if (W , s) |= � then {s} else ?

Dijkstra’s WP semantics

wp : LP ⇥ LK ! LK

wp(P u Q,↵) = wp(P,↵) ^ wp(Q,↵)

wp(P;Q,↵) = wp(P,wp(Q,↵))

wp(xG := e,↵) = 8kG · [kG = e](↵[xG\kG])

wp(newkG · P,↵) = 8kG · wp(P,↵)

wp(�?,↵) = [�]↵ 4/10

Program Syntax
Knowledge-based programs: Syntax and Semantics

Program syntax

P ::= ↵? (test/announcement)

xG := e (assignment)

newkG · P (declare k visible to G)

P;Q (sequential composition)

P u Q (nondeterministic choice)

Logic syntax

↵ ::= ⇡ (atomic predicate)

↵ ^ ↵0 (conjunction)

¬↵ (negation)

KA↵ (knowledge modality)

[↵0]↵ (public announcement formula)

8xG · ↵ (universal quantification)

Relational semantics

RW : LP ⇥ U ! P(U)

RW (P u Q, s) = {s0[cAg 7! l] | s0 2 RW (P, s)}

[{s0[cAg 7! r] | s0 2 RW (Q, s)}

RW (P;Q, s) =
S

s02RW (P,s){RR⇤
W

(P,W)(Q, s0)}

RW (xG := e, s) = {s[kG 7! s(xG), xG 7! s(e)]}

RW (newkG · P, s) = R
⇤
W

(P, {s[kG 7! d] | d 2 D})

RW (�?, s) = if (W , s) |= � then {s} else ?

Dijkstra’s WP semantics

wp : LP ⇥ LK ! LK

wp(P u Q,↵) = wp(P,↵) ^ wp(Q,↵)

wp(P;Q,↵) = wp(P,wp(Q,↵))

wp(xG := e,↵) = 8kG · [kG = e](↵[xG\kG])

wp(newkG · P,↵) = 8kG · wp(P,↵)

wp(�?,↵) = [�]↵ 4/10

Second Epistemic Logic Syntax 𝓛𝓟

Richer than [IJCAI17]

Let’s re-think relational semantics (for the new 𝓛𝓟….) Semantics of assignment

• R(v := x ; v := 0,!) = R(v := 0,!)

•

5/10

Semantics of assignment

• R(v := x ; v := 0,!) = R(v := 0,!)

(wrong if agent knows the program and can remember)

•

5/10

Semantics of assignment

• R(v := x ; v := 0,!) = R(v := 0,!)

(wrong if agent knows the program and can remember)

• wp(v := x ,↵) = ↵[v\x]

5/10

Semantics of assignment

• R(v := x ; v := 0,!) = R(v := 0,!)

(wrong if agent knows the program and can remember)

• wp(v := x ,↵) = ↵[v\x]
Example

x 2 {0, 1}, v is visible, and x a secret

Does the program P = v := x leaks the secret x?

wp(v := x ,K(x = 0) _ K(x = 1)) = K(x = 0) _ K(x = 1)[v\x]

5/10

Semantics of assignment

• R(v := x ; v := 0,!) = R(v := 0,!)

(wrong if agent knows the program and can remember)

• wp(v := x ,↵) = ↵[v\x]
Example

x 2 {0, 1}, v is visible, and x a secret

Does the program P = v := x leaks the secret x?

wp(v := x ,K(x = 0) _ K(x = 1)) = K(x = 0) _ K(x = 1)[v\x]

5/10

Semantics of assignment

• R(v := x ; v := 0,!) = R(v := 0,!)

(wrong if agent knows the program and can remember)

• wp(v := x ,↵) = ↵[v\x]
Example

x 2 {0, 1}, v is visible, and x a secret

Does the program P = v := x leaks the secret x?

wp(v := x ,K(x = 0) _ K(x = 1)) = K(x = 0) _ K(x = 1)[v\x]

5/10

Semantics of assignment

• R(v := x ; v := 0,!) = R(v := 0,!)

(wrong if agent knows the program and can remember)

• wp(v := x ,↵) = ↵[v\x]
Example

x 2 {0, 1}, v is visible, and x a secret

Does the program P = v := x leaks the secret x?

wp(v := x ,K(x = 0) _ K(x = 1)) = K(x = 0) _ K(x = 1)[v\x]

= K(x = 0) _ K(x = 1)(should be True)

5/10

Semantics of assignment

• R(v := x ; v := 0,!) = R(v := 0,!)

(wrong if agent knows the program and can remember)

• wp(v := x ,↵) = ↵[v\x]
Example

x 2 {0, 1}, v is visible, and x a secret

Does the program P = v := x leaks the secret x?

wp(v := x ,K(x = 0) _ K(x = 1)) = K(x = 0) _ K(x = 1)[v\x]

= K(x = 0) _ K(x = 1)(should be True)

What if the program P = (v := x u v := ¬x)?

depends on the agent’s observability of program execution

5/10

(wrong if the thread knows the program)

depends on the thread’s observability of program execution

Relational Semantics for 𝓛𝓟….

So, it depends on a few things and it is not obvious

For public programs, …

Knowledge-based programs: Syntax and Semantics

Program syntax

P ::= ↵? (test/announcement)

xG := e (assignment)

newkG · P (declare k visible to G)

P;Q (sequential composition)

P u Q (nondeterministic choice)

Logic syntax

↵ ::= ⇡ (atomic predicate)

↵ ^ ↵0 (conjunction)

¬↵ (negation)

KA↵ (knowledge modality)

[↵0]↵ (public announcement formula)

8xG · ↵ (universal quantification)

Relational semantics

RW : LP ⇥ U ! P(U)

RW (P u Q, s) = {s0[cAg 7! l] | s0 2 RW (P, s)}

[{s0[cAg 7! r] | s0 2 RW (Q, s)}

RW (P;Q, s) =
S

s02RW (P,s){RR⇤
W

(P,W)(Q, s0)}

RW (xG := e, s) = {s[kG 7! s(xG), xG 7! s(e)]}

RW (newkG · P, s) = R
⇤
W

(P, {s[kG 7! d] | d 2 D})

RW (�?, s) = if (W , s) |= � then {s} else ?

Dijkstra’s WP semantics

wp : LP ⇥ LK ! LK

wp(P u Q,↵) = wp(P,↵) ^ wp(Q,↵)

wp(P;Q,↵) = wp(P,wp(Q,↵))

wp(xG := e,↵) = 8kG · [kG = e](↵[xG\kG])

wp(newkG · P,↵) = 8kG · wp(P,↵)

wp(�?,↵) = [�]↵ 4/10

Second, More Expressive Program-Epistemic
Language

Model Checking AI Knowledge-Systems

• ⇤P(Kv(secret mod 2)) (after program P , agent

knows that � holds)

• K (⇤Psecret mod 2 = 0) (agent knows that “after

program P , � holds”)

• ⇤DC

⇣
K0

⇣
x ,

W
n�1
i=0 pi

⌘⌘
After the DC program, A0

knows that if the exclusive-

or of their announcent is

true, then one of them paid

Program-Epistemic Logic LPK

↵ ::= ⇡ | ↵ ^ ↵0 | ¬↵ | Kai
↵ | [↵0]↵ | 8xG · ↵ | ⇤P↵

6/10

Model Checking AI Knowledge-Systems

• ⇤P(Kv(secret mod 2)) (after program P , agent

knows that � holds)

• K (⇤Psecret mod 2 = 0) (agent knows that “after

program P , � holds”)

• ⇤DC

⇣
K0

⇣
x ,

W
n�1
i=0 pi

⌘⌘
After the DC program, A0

knows that if the exclusive-

or of their announcent is

true, then one of them paid

Program-Epistemic Logic LPK

↵ ::= ⇡ | ↵ ^ ↵0 | ¬↵ | Kai
↵ | [↵0]↵ | 8xG · ↵ | ⇤P↵

6/10

6 F. Rajaona et al.

Epistemic models. We model agents’ knowledge of the program state with a
possible worlds semantics built on the observability of program variables [18].
We define, for each a in Ag, the binary relation ⇡a on U by: s ⇡a s0 if and only
if s and s0 agree on the part of their domains that is observable by a, i.e.,

s ⇡a s0 iff dom(s) \ oa = dom(s0) \ oa and
V

x2(dom(s)\oa)
(s(x) = s0(x)).

One can show that ⇡a is an equivalence relation on U . Each subset W of U
defines a possible worlds model (W, {⇡a|W }a2Ag), such that the states of W are
the possible worlds and for each a 2 Ag the indistinguishability relation is the
restriction of ⇡a on W . We shall use the set W ✓ U to refer to an epistemic
model, omitting the family of equivalence relations {⇡a|W }a2Ag.

Truth of an Lm

DK
formula. We give the semantics of an Lm

DK
formula at a

pointed model (W, s), which consist of an epistemic model W and a state s 2 W .

Definition 4. Let W be an epistemic model, s 2 W a state, ↵ a formula in
Lm

DK
such that FV (↵) ✓ dom(W). The truth of an epistemic formula ↵ at the

pointed model (W, s) is defined recursively on the structure of ↵ as follows:

(W, s) |= ⇡ iff s |=
QF

⇡

(W, s) |= ¬↵ iff (W, s) 6|= ↵

(W, s) |= ↵ ^ ↵0 iff (W, s) |= ↵ and (W, s) |= ↵0

(W, s) |= Ka↵ iff for all s0 2 W, s0 ⇡a s implies (W, s0) |= ↵

(W, s) |= [�]↵ iff (W, s) |= � implies (W|� , s) |= ↵

(W, s) |= ⇤P↵ iff for all s0 2 RW (P, s), (R⇤
W
(P,W), s0) |= ↵

(W, s) |= 8xG · ↵ iff for all c 2 D, (
S

d2D{s0[xG 7! d] | s0 2 W}, s[xG 7! c]) |= ↵

where xG 62 dom(W), W|� is the submodel of W that consists of the states in
which � is true, i.e., W|� = {s 2 W | (W, s) |= �} [4].

This definition extends from a pointed model (W, s) to the entire epistemic
model W as follows: W |= ↵ iff for any s in W , (W, s) |= ↵.

Our interpretation of logical connectors, epistemic formulas, and the public
announcement formulas are all standard [4,11].

For universal quantification, the epistemic context W is augmented by allow-
ing xG to be any possible value in the domain. When interpreting 8xG · Ka↵0

where a 2 G, we have s ⇡a s0 iff s[xG 7! c] ⇡a s0[xG 7! c]. However, if a 62 G,
then s[xG 7! c] ⇡a s0[xG 7! d] for any d 2 D and for any s0 ⇡a s.

In our interpretation of ⇤P↵, the context W is also updated by the relation
RW , by taking the post-image of W by RW

4. The truth of ↵ is interpreted at a
post-state s0 under the new context. We use the function RW (P, ·) : U ! P(U)
to model the program P . We give the function RW (P, ·) concretely for each
command P , after we define the programming language PL in the next section.

4 The post-image of a function f is denoted by f⇤, i.e., f⇤(E) =
S
{f(x)|x 2 E}.

K in front of program

Richer than [IJCAI17]

Program-based Semantics for 𝓛K….

Knowledge-based programs: Syntax and Semantics

Program syntax

P ::= ↵? (test/announcement)

xG := e (assignment)

newkG · P (declare k visible to G)

P;Q (sequential composition)

P u Q (nondeterministic choice)

Logic syntax

↵ ::= ⇡ (atomic predicate)

↵ ^ ↵0 (conjunction)

¬↵ (negation)

KA↵ (knowledge modality)

[↵0]↵ (public announcement formula)

8xG · ↵ (universal quantification)

Relational semantics

RW : LP ⇥ U ! P(U)

RW (P u Q, s) = {s0[cAg 7! l] | s0 2 RW (P, s)}

[{s0[cAg 7! r] | s0 2 RW (Q, s)}

RW (P;Q, s) =
S

s02RW (P,s){RR⇤
W

(P,W)(Q, s0)}

RW (xG := e, s) = {s[kG 7! s(xG), xG 7! s(e)]}

RW (newkG · P, s) = R
⇤
W

(P, {s[kG 7! d] | d 2 D})

RW (�?, s) = if (W , s) |= � then {s} else ?

Dijkstra’s WP semantics

wp : LP ⇥ LK ! LK

wp(P u Q,↵) = wp(P,↵) ^ wp(Q,↵)

wp(P;Q,↵) = wp(P,wp(Q,↵))

wp(xG := e,↵) = 8kG · [kG = e](↵[xG\kG])

wp(newkG · P,↵) = 8kG · wp(P,↵)

wp(�?,↵) = [�]↵ 4/10

Linking programs and formula “tighter” than in the first attempt

Relational semantics at states and this WP-based semantics at
formulae coincide

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

𝓛𝓟K Model Checking as First-Order (Un)satisfiability
LPK Model Checking as First-Order (Un)satisfiability

Main theorem

• [|�|] a set of states satisfying FO formula �

• ↵ 2 LPK

[|�|] |= ↵ , FO formula � ^ ¬⌧(�,↵) unsatisfiable

where ⌧ : LFO ⇥ LPK ! LFO

⌧(�,⇡) = ⇡

⌧(�,¬↵) = ¬⌧(�,↵)
⌧(�,↵1 � ↵2) = ⌧(�,↵1) � ⌧(�,↵2)

⌧(�, 8xG · ↵) = 8xG · ⌧(�,↵)

⌧(�,Ka↵) = 8n · (� ! ⌧(�,↵))

⌧(�, [�]↵) = ⌧(�,�) ! ⌧(� ^ ⌧(�,�),↵)

⌧(�,⇤P↵) = ⌧(�,wp(P ,↵))

7/10

LPK Model Checking as First-Order (Un)satisfiability

Main theorem

• [|�|] a set of states satisfying FO formula �

• ↵ 2 LPK

[|�|] |= ↵ , FO formula � ^ ¬⌧(�,↵) unsatisfiable

where ⌧ : LFO ⇥ LPK ! LFO

⌧(�,⇡) = ⇡

⌧(�,¬↵) = ¬⌧(�,↵)
⌧(�,↵1 � ↵2) = ⌧(�,↵1) � ⌧(�,↵2)

⌧(�, 8xG · ↵) = 8xG · ⌧(�,↵)

⌧(�,Ka↵) = 8n · (� ! ⌧(�,↵))

⌧(�, [�]↵) = ⌧(�,�) ! ⌧(� ^ ⌧(�,�),↵)

⌧(�,⇤P↵) = ⌧(�,wp(P ,↵))

7/10One “go” translation for the “full” logic, unlike before

𝓛𝓟K Model Checking as First-Order (Un)satisfiability
LPK Model Checking as First-Order (Un)satisfiability

Main theorem

• [|�|] a set of states satisfying FO formula �

• ↵ 2 LPK

[|�|] |= ↵ , FO formula � ^ ¬⌧(�,↵) unsatisfiable

where ⌧ : LFO ⇥ LPK ! LFO

⌧(�,⇡) = ⇡

⌧(�,¬↵) = ¬⌧(�,↵)
⌧(�,↵1 � ↵2) = ⌧(�,↵1) � ⌧(�,↵2)

⌧(�, 8xG · ↵) = 8xG · ⌧(�,↵)

⌧(�,Ka↵) = 8n · (� ! ⌧(�,↵))

⌧(�, [�]↵) = ⌧(�,�) ! ⌧(� ^ ⌧(�,�),↵)

⌧(�,⇤P↵) = ⌧(�,wp(P ,↵))

7/10

LPK Model Checking as First-Order (Un)satisfiability

Main theorem

• [|�|] a set of states satisfying FO formula �

• ↵ 2 LPK

[|�|] |= ↵ , FO formula � ^ ¬⌧(�,↵) unsatisfiable

7/10

Implementation

• Mechanised the translation in Haskell

• Case studies

- ⇤DC

⇣
K0

⇣
x ,

W
n�1
i=0 pi

⌘⌘
with n = 200 in 1.27s

- h(¬Kvb(ma) ^ h↵aiKvb(ma))?iKvadb in 0.60s 8/10

[FM2023]

𝓛𝓟K Model Checking as First-Order (Un)satisfiability

LPK Model Checking as First-Order (Un)satisfiability

Main theorem

• [|�|] a set of states satisfying FO formula �

• ↵ 2 LPK

[|�|] |= ↵ , FO formula � ^ ¬⌧(�,↵) unsatisfiable

7/10

! Experiments before (knowledge-
based information flow in
programs for voting, anonymous
communication, …,), BUT more
expressive and a bit slower

Program Semantics and Verification Technique for AI-centred Programs 13

Experiments & Results. We report on checking the validity for:

�1 = ⇤⇢

⇣
(¬p0))

⇣
K0

⇣V
n�1
i=1 ¬pi

⌘
_
V

n�1
i=1 ¬K0pi

⌘⌘
�3 = ⇤⇢(K0p1)

�2 = ⇤⇢

⇣
K0

⇣
x ,

W
n�1
i=0 pi

⌘⌘
� = K0

⇣
⇤⇢

⇣
x ,

W
n�1
i=0 pi

⌘⌘
.

The formula �1 states that after the program execution, if cryptographer 0 has
not paid then she knows that no cryptographer paid, or (in case a cryptographer
paid) she does not know which one. The formula �2 reads that after the program
execution, cryptographer 0 knows that xAg is true iff one of the cryptographers
paid. The formula �3 reads that after the program execution, cryptographer 0
knows that cryptographer 1 has paid, which is expected to be false. Formula �
states cryptographer 0 knows that, at the end of the program execution, xAg is
true iff one of the cryptographers paid.

Formulas �1,�2, and �3 were checked in [18] as well. Importantly, formula �
cannot be expressed or checked by the framework in [18]. We compare the perfor-
mance of our translation on this case-study with that of [18]. To fairly compare,
we reimplemented faithfully the SP-based translation in the same environment
as ours. We tested our translation (denoted ⌧wp) and the reimplementation of
the translation in [18] (denoted ⌧SP) on the same machine.

Note that the performance we got for ⌧SP differs from what is reported in [18].
This is especially the case for the most complicated formula �1. This may be
due to the machine specifications, or because we used binary versions of Z3 and
CVC5, rather than building them from source, like in [18].

The results of the experiments, using the Z3 solver, are shown in Table 1. CVC5
was less performant than Z3 for this example, as shown (only) for �2. Generally,
the difference in performance between the two translations were small. The SP -
based translation slightly outperforms our translation for �2 and �3, but only for
some cases. Our translation outperforms the SP -based translation for �1 in these
experiments. Again, we note that the performance of the SP -based translation
reported here is different from the performance reported in [18]. Experiments
that took more than 600 seconds were timed out

Formula �1 Formula �2 Formula �3 Formula �

n ⌧wp+Z3 ⌧SP+Z3 ⌧wp+CVC5 ⌧wp+Z3 ⌧SP+Z3 ⌧wp+Z3 ⌧SP+Z3 ⌧wp+Z3 ⌧SP+Z3

10 0.05 s 4.86 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s N/A
50 31 s t.o. 0.41 s 0.05 s 0.06 s 0.03 s 0.02 s 0.03 s N/A
100 t.o. t.o. 3.59 s 0.15 s 0.16 s 0.07 s 0.06 s 0.07 s N/A
200 t.o. t.o. 41.90 s 1.27 s 0.71 s 0.30 s 0.20 s 0.30 s N/A

Table 1. Performance of our wp-based translation vs. our reimplementation of the [18]
SP-based translation for the Dining Cryptographers. Formula � is not supported by
the SP-based translation in [18].

…(“SP” stands for the previous method at IJCAI17)

So, why and …are we done?

How come we do not depreciate so much in efficiency, even if we
allow 𝑲𝒂𝑲𝒃𝝓 and operator 𝑲 even in front of operator □𝑪?

Ø public announcement à model update/shrinking

How come we can allow the program operate and the K operator to
commute?

Ø Single assignment of variables ..!!

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

Yet Another Program-Epistemic Logics ... [AAAI2023]

Ø Similar to the ones you saw (perhaps a “mix” of the two), but
Ø no public announcements
Ø the programs are modelled with dynamic logics [Vardi2013]

Ø Assignments different via substitutions

logic LPK is more general than the logic in (Gorogiannis,
Raimondi, and Boureanu 2017): our relational semantics
is not dependent on programs’ predicate transformers, and
our programs are fully mapped to logic operators. In that
sense, our logic LPK can be seen as an extension of star-
free linear dynamic logic (LDL) (De Giacomo and Vardi
2013b) with epistemic operators, or equivalently dynamic
logic (DL) (Harel 1984) extended with an epistemic oper-
ator. A nice consequence is that, like in DL (Harel 1984)
and unlike in L⇤K (Gorogiannis, Raimondi, and Boure-
anu 2017), in our program-epistemic logic LPK, the non-
atomic program operators for sequential composition and
non-deterministic choice are respectively obtained by apply-
ing atomic program operators in sequence, and by using the
OR logic connective over atomic program operators.

Second, for our logic, we show a totally new mech-
anism of translating its formulas to first-order logic, in
such a way that we obtain that model checking LPK re-
duces to first-order satisfaction. Indeed, because our logic
is more aligned to “standard” logics (such as linear dynamic
logic – LDL (De Giacomo and Vardi 2013b) and dynamic
logic – DL (Harel 1984)), our translation is entirely recur-
sive, without the need to leverage special cases separately
and/or Hoare-style predicate transformers. In this transla-
tion and reduction result, we include formulas that (Goro-
giannis, Raimondi, and Boureanu 2017) could not treat, i.e.,
Ka[program]' – expressing that agent a knows fact '

about the execution of “program”.
Third, we mechanise our translation in Haskell and ex-

periment with SMT-solving being called to answer w.r.t.
satisfaction of LPK formulas. We mechanise our translation
in a general way (i.e., not for a given bespoke program as
per (Gorogiannis, Raimondi, and Boureanu 2017), but for
the whole logic). This is possible also because our logic
itself “builds” the program operators within. We report on
the experiments on one “home-made” relevant use-case, as
well as the canonical example of the dining cryptographers,
used in (Gorogiannis, Raimondi, and Boureanu 2017) and
in most epistemic model checking benchmarks.

Program-Epistemic Logic

In this section we define an epistemic extension of dynamic
logic (Harel 1984), in particular strictly more expressive1

than the language in (Gorogiannis, Raimondi, and Boureanu
2017).

Agents & Program Variables. We assume that agents

(or threads) in set Ag have access to a countable set V of
variables, that are modified concurrently by them and/or an
outer program. Variables may belong the one of the follow-
ing finite sets:

• ~p ✓ V is a non-empty set of program variables;
• ~oa ✓ ~p are the variables agent a 2 Ag can observe.

1This is directly from the fact that the program operators and
the knowledge operator can commute in our language, whereas
in (Gorogiannis, Raimondi, and Boureanu 2017) they cannot. The
programs are also more general herein, but this is secondary.

• ~na = ~p \ ~oa are the variables agent a 2 Ag cannot ob-

serve.
We use ~o and ~n for observable and non-observable vari-

ables in general, i.e., un-indexed by a given agent. We use
~x = hx1, . . . , xni to denote both the vector and the set
of variables x1, . . . , xn, according to some enumeration, as
clear from the context. Finally, both ~xi and ~x(i) denote the
i-th element in vector ~x.

Languages – Syntax. As in (Gorogiannis, Raimondi, and
Boureanu 2017), we assume a base language LQF to be a
quantifier-free, first-order language including identity ‘=’,
whose variables are user- or domain-specific, i.e., integers,
reals, etc. The particular choice of LQF is left under-specified
here, but we assume that LQF is decidable.

We now define two languages based on LQF.
The first-order language LFO is the extension of LQF

with quantification.
Definition 1 (LFO). Formulas � in LFO are defined in BNF

as follows, where ⇡ 2 LQF and x 2 V :

� ::= ⇡ | ¬� | � ^ � | 8x�

We extend quantification from variables to vectors as
usual, writing 8~x� for 8x1 . . . 8xn�. Further, we can intro-
duce Boolean operators _, !, $, and the existential quan-
tifier 9 as standard. Moreover, the simultaneous substitution
of variables ~x with expressions ~e in formula � (provided that
all ~es are free for ~xs in � and |~x| = |~e| = m) is denoted as
�[x1/e1, . . . , xm/em], or �[~x/~e] in short.

Our program-epistemic language LPK extends the base
language LQF with the epistemic modality Ka, expressing
the knowledge of agent a, as well as the program operator

[⇢] of dynamic logic (Harel 1984), for some program ⇢.
Definition 2 (LPK). Formulas ↵ and programs ⇢ in LPK are

defined in BNF as follows:

↵ ::= ⇡ | ¬↵ | ↵ ^ ↵ | (Ka↵)[~x/~e] | [⇢]↵
⇢ ::= x := e | �?

where ⇡ 2 LQF, a is a fixed agent in Ag (i.e., we do not allow

multi-agent nesting of epistemic modalities), ~e are domain-

specific expressions over program variables V up to com-

putable and non-recursive mathematical function, � 2 LFO

is a first-order formula over V .

Note that we indicate substitutions [~x/~e] explicitly in
epistemic formulas of type (Ka↵)[~x/~e]. This is because
– as we will see shortly – formulas (Ka↵)[~x/~e] and
Ka(↵[~x/~e]) are not equivalent in our semantics. That
is, substitution does not commute with epistemic op-
erators in general, differently from what happens with
Boolean operators. For instance, even though Venus is
the morning star, some agent a might not know that it
is also the evening start. As a result, (Ka(V enus =
morn st))[V enus/even st] can be true in our seman-
tics, but Ka((V enus = morn st)[V enus/even st]) =
Ka(morn st = even st) might still be false (Kripke 1963).

Moreover, we write Ka↵ as a shorthand for (Ka↵)[x/x],
where [x/x] is the identity substitution,

Derived dynamic operators. Given the syntax in Def. 2,
we can introduce the arbitrary assignment x := ⇤ of dy-
namic logic, as the following shorthand, provided that the
domain D of interpretation is finite:

[x := ⇤]↵ ::=
^

c2D

[x := c]↵

Further, dynamic operators for sequential composition ‘;’
and non-deterministic choice t can be introduced as the fol-
lowing abbreviations, which are standard in dynamic logic
(Harel 1984):

[⇢; ⇢0]↵ ::= [⇢] [⇢0]↵

[⇢ t ⇢0]↵ ::= [⇢]↵ _ [⇢0]↵

So, hereafter we will make use of language LPK with all
the derived operators described above, simply intended as
the corresponding shorthands.

We write FV (�) for the set of free variables of a formula
�. We normally use Greek letters �, , . . ., and ↵,�, . . .

to denote formulas in the first-order language LFO and
program-epistemic formulas in LPK, respectively. We refer
to the fragment of LPK without program operator as the epis-

temic language LK. Finally, for a tuple ~x of variables and a
tuple ~e of terms such that |~x| = |~e|, we write

V
(~x = ~e) as a

shorthand for
V

i|~x|(xi = ei).
Program Operators [⇢] vs Programs ⇢. In LPK we con-

sider program operators [⇢] of dynamic logic. Each such
operator [⇢] corresponds to a program ⇢ over variables, as
implied by the syntax of LPK. Hereafter we use “program-
operator” and “program” interchangeably, when the context
allows it.

Our program-operators [⇢] applied at a state s can do:
“x := e”, i.e., assign the value of expression e to vari-
able x; “�?”, i.e., check the truth of first-order condition �;
“x := ⇤”, i.e., assign an arbitrary value to variable x; “⇢; ⇢0”,
i.e., compose sequentially programs ⇢ and ⇢0; “⇢ t ⇢0”, i.e.,
choose non-deterministically to execute either program ⇢ or
program ⇢

0. We remark that our program operators are in-
terpreted similarly to operators in Linear Dynamic Logic
(LDL) (Giacomo and Vardi 2015); however, we do not con-
sider the full expressivity of LDL, i.e., a program operator
may not necessarily be a full regular expression, as we ex-
plicitly do not consider the Kleene star in our syntax.

Languages – Semantics. We now provide the semantics
for the languages introduced in the previous section. First,
let D be the domain of interpretation for variables and quan-
tifiers. Then, a valuation is a total function s : V ! D, nat-
urally lifted to tuples ~x and ~e. Such a valuation is a state. We
write s[x 7! c] to denote the state s0 that leaves s unchanged
apart from assigning variable x 2 V to element c 2 D, i.e.,
s
0(x) = c and s

0(y) = s(y) for all y 2 V different from x.
Let U be the set of all such states.

Given the definition of state s as above, s is in particular
an interpretation of LQF.
Definition 3 (Semantics of LFO). Given a state s 2 U and

formula � 2 LFO, we define the satisfaction relation |= for

LFO inductively as follows:

s |= ⇡ iff s |=QF ⇡

s |= ¬� iff s 6|= �

s |= � ^ �0 iff s |= � and s |= �
0

s |= 8x� iff for all c 2 D, s[x 7! c] |= �

where |=QF is the underlying satisfaction relation for LQF.

We remark that Def. 3 of satisfaction for LFO is com-
pletely standard (Mendelson 1964).

To introduce the semantics of LPK we need a few more
notions, starting with a relation of indistinguishability for
the interpretation of epistemic operators.
Definition 4 (Indistinguishability). Let X ✓ V be a set of

variables. The indistinguishability relation ⇠X is a binary

relation over U , defined as s ⇠X s
0
iff for all x 2 X , s(x) =

s
0(x). Clearly, ⇠X is an equivalence relation over U , for

any X ✓ V .

Further, to define the state updates entailed by program
operators, we define a family of binary relations. Namely,
for each program ⇢, let R⇢ ✓ U ⇥ U be a binary relation
representing the transition relation induced by ⇢, considered
at a state s. Intuitively, R⇢(s, s0) denotes that we can reach
state s

0 from s via program ⇢. We can then naturally lift R⇢

to a function from states to sets of states, as well as a function
from sets of states to sets of states, as follows, where s 2 U

and S ✓ U :

R⇢(s) = {s0 2 U | R⇢(s, s
0)}

R⇢(S) =
S

s2S R⇢(s)

Definition 5 (Semantics of LPK). Given a state s 2 W ✓ U ,

and formula ↵ 2 LPK, we define the satisfaction relation |=
for LPK inductively as follows.

(W, s) |= ⇡ iff s |=QF ⇡

(W, s) |= ¬↵ iff (W, s) 6|= ↵

(W, s) |= ↵ ^ ↵0
iff (W, s) |= ↵ and (W, s) |= ↵

0

(W, s) |= (Ka↵)[~x/~e] iff for all s
0 2 W ,

s
0 ⇠~oa s[~x 7! s(~e)] implies

(W, s
0) |= ↵

(W, s) |= [⇢]↵ iff for all s
0 2 R⇢(s), (R⇢(W), s0) |= ↵

where the relation R⇢ is inductively defined as follows:

Rx:=e(s) = {s[x 7! s(e)]};

R�?(s) = {s} if s |= �, and ; otherwise.

As a consequence of Def. 5, we have the following clauses
for dynamic operators:
(W, s) |= [x := e]↵ iff (Rx:=e(W), s[x 7! e]) |= ↵

(W, s) |= [�?]↵ iff (R�?(W), s) |= �! ↵

Notice that we use the same symbol |= for the satisfac-
tion relations for of both language LFO and LPK; the con-
text will disambiguate. Moreover, in the derived truth clause
for [�?]↵, the expression � ! ↵ is not a formula in LPK
strictly speaking, as � is a generic first-order formula in LFO.
Nonetheless, we are able to interpret formulas of type [�?]↵
by using the corresponding clause in Def. 5. Hereafter we
use ~x := ~e to denote the simultaneous assignment of ex-
pressions ~e to variables ~x.

In LPK, we can write formulas such as [x := e]↵ to be
evaluated at a state s. By Def. 5, this means that we first

We get derived dynamic operators ..

Logic

Derived dynamic operators. Given the syntax in Def. 2,
we can introduce the arbitrary assignment x := ⇤ of dy-
namic logic, as the following shorthand, provided that the
domain D of interpretation is finite:

[x := ⇤]↵ ::=
^

c2D

[x := c]↵

Further, dynamic operators for sequential composition ‘;’
and non-deterministic choice t can be introduced as the fol-
lowing abbreviations, which are standard in dynamic logic
(Harel 1984):

[⇢; ⇢0]↵ ::= [⇢] [⇢0]↵

[⇢ t ⇢0]↵ ::= [⇢]↵ _ [⇢0]↵

So, hereafter we will make use of language LPK with all
the derived operators described above, simply intended as
the corresponding shorthands.

We write FV (�) for the set of free variables of a formula
�. We normally use Greek letters �, , . . ., and ↵,�, . . .

to denote formulas in the first-order language LFO and
program-epistemic formulas in LPK, respectively. We refer
to the fragment of LPK without program operator as the epis-

temic language LK. Finally, for a tuple ~x of variables and a
tuple ~e of terms such that |~x| = |~e|, we write

V
(~x = ~e) as a

shorthand for
V

i|~x|(xi = ei).
Program Operators [⇢] vs Programs ⇢. In LPK we con-

sider program operators [⇢] of dynamic logic. Each such
operator [⇢] corresponds to a program ⇢ over variables, as
implied by the syntax of LPK. Hereafter we use “program-
operator” and “program” interchangeably, when the context
allows it.

Our program-operators [⇢] applied at a state s can do:
“x := e”, i.e., assign the value of expression e to vari-
able x; “�?”, i.e., check the truth of first-order condition �;
“x := ⇤”, i.e., assign an arbitrary value to variable x; “⇢; ⇢0”,
i.e., compose sequentially programs ⇢ and ⇢0; “⇢ t ⇢0”, i.e.,
choose non-deterministically to execute either program ⇢ or
program ⇢

0. We remark that our program operators are in-
terpreted similarly to operators in Linear Dynamic Logic
(LDL) (Giacomo and Vardi 2015); however, we do not con-
sider the full expressivity of LDL, i.e., a program operator
may not necessarily be a full regular expression, as we ex-
plicitly do not consider the Kleene star in our syntax.

Languages – Semantics. We now provide the semantics
for the languages introduced in the previous section. First,
let D be the domain of interpretation for variables and quan-
tifiers. Then, a valuation is a total function s : V ! D, nat-
urally lifted to tuples ~x and ~e. Such a valuation is a state. We
write s[x 7! c] to denote the state s0 that leaves s unchanged
apart from assigning variable x 2 V to element c 2 D, i.e.,
s
0(x) = c and s

0(y) = s(y) for all y 2 V different from x.
Let U be the set of all such states.

Given the definition of state s as above, s is in particular
an interpretation of LQF.
Definition 3 (Semantics of LFO). Given a state s 2 U and

formula � 2 LFO, we define the satisfaction relation |= for

LFO inductively as follows:

s |= ⇡ iff s |=QF ⇡

s |= ¬� iff s 6|= �

s |= � ^ �0 iff s |= � and s |= �
0

s |= 8x� iff for all c 2 D, s[x 7! c] |= �

where |=QF is the underlying satisfaction relation for LQF.

We remark that Def. 3 of satisfaction for LFO is com-
pletely standard (Mendelson 1964).

To introduce the semantics of LPK we need a few more
notions, starting with a relation of indistinguishability for
the interpretation of epistemic operators.
Definition 4 (Indistinguishability). Let X ✓ V be a set of

variables. The indistinguishability relation ⇠X is a binary

relation over U , defined as s ⇠X s
0
iff for all x 2 X , s(x) =

s
0(x). Clearly, ⇠X is an equivalence relation over U , for

any X ✓ V .

Further, to define the state updates entailed by program
operators, we define a family of binary relations. Namely,
for each program ⇢, let R⇢ ✓ U ⇥ U be a binary relation
representing the transition relation induced by ⇢, considered
at a state s. Intuitively, R⇢(s, s0) denotes that we can reach
state s

0 from s via program ⇢. We can then naturally lift R⇢

to a function from states to sets of states, as well as a function
from sets of states to sets of states, as follows, where s 2 U

and S ✓ U :

R⇢(s) = {s0 2 U | R⇢(s, s
0)}

R⇢(S) =
S

s2S R⇢(s)

Definition 5 (Semantics of LPK). Given a state s 2 W ✓ U ,

and formula ↵ 2 LPK, we define the satisfaction relation |=
for LPK inductively as follows.

(W, s) |= ⇡ iff s |=QF ⇡

(W, s) |= ¬↵ iff (W, s) 6|= ↵

(W, s) |= ↵ ^ ↵0
iff (W, s) |= ↵ and (W, s) |= ↵

0

(W, s) |= (Ka↵)[~x/~e] iff for all s
0 2 W ,

s
0 ⇠~oa s[~x 7! s(~e)] implies

(W, s
0) |= ↵

(W, s) |= [⇢]↵ iff for all s
0 2 R⇢(s), (R⇢(W), s0) |= ↵

where the relation R⇢ is inductively defined as follows:

Rx:=e(s) = {s[x 7! s(e)]};

R�?(s) = {s} if s |= �, and ; otherwise.

As a consequence of Def. 5, we have the following clauses
for dynamic operators:
(W, s) |= [x := e]↵ iff (Rx:=e(W), s[x 7! e]) |= ↵

(W, s) |= [�?]↵ iff (R�?(W), s) |= �! ↵

Notice that we use the same symbol |= for the satisfac-
tion relations for of both language LFO and LPK; the con-
text will disambiguate. Moreover, in the derived truth clause
for [�?]↵, the expression � ! ↵ is not a formula in LPK
strictly speaking, as � is a generic first-order formula in LFO.
Nonetheless, we are able to interpret formulas of type [�?]↵
by using the corresponding clause in Def. 5. Hereafter we
use ~x := ~e to denote the simultaneous assignment of ex-
pressions ~e to variables ~x.

In LPK, we can write formulas such as [x := e]↵ to be
evaluated at a state s. By Def. 5, this means that we first

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

SAT
(AAAI 2023)

SAT
(IJCAI 2017)

Model Checking
(MCMAS)

Practical Experimentation

SAT (our translation) SAT (Gorogiannis et al., 2017) MCMAS (Lomuscio et al., 2015)
Formula result time result time result time

n = 5 n = 10 n = 5 n = 10 n = 5 n = 10
¬↵1 unsat 0.07s 70s unsat 0.03s 0.1s unsat 0.17s 0.18s
¬↵2 unsat 0.03s 7s unsat 0.02s 0.1s unsat 0.10s 0.12s
¬↵0

2 unsat 0.15s 17s N/A - 0.1s unsat 0.20s 0.25s
¬↵3 sat 0.04s 7s sat 0.01s 0.1s sat 0.10s 0.12s

Table 1: Performances on Verifying the Dining-cryptographers Problem

ing evaluated before program operators, then their “satisfac-
tion contexts” and epistemic contexts (i.e., set of states) were
sufficient to give their main result. In turn, our main result
(Th. 9) need an extra quantification: it quantifies over every
state s in such a “satisfaction contexts”/model [[�]]. Also, our
translation of knowledge operators already contains one ex-
tra quantification compared to (Gorogiannis, Raimondi, and
Boureanu 2017) and inner variable renaming, to cater for
similar reason (i.e., programs changing variables “ahead” of
an epistemic operator be evaluated). Thus, all in all, for a
given formula containing one K operator to be translated, we
may iterate four times more over the state-space than (Goro-
giannis, Raimondi, and Boureanu 2017) had to. So, in prac-
tice, our ability to translate a richer logic to FO comes at a
depreciation in efficiency (on average) compared to (Goro-
giannis, Raimondi, and Boureanu 2017), yet we can solve
the dining cryptographers problems for 5 cryptographers ten
times faster than the MCMAS model checker (Lomuscio,
Qu, and Raimondi 2015) can.

Related Work

On SMT-Based Verification of Epistemic Properties of

Programs. With the work of Gorogiannis et al. (Gorogian-
nis, Raimondi, and Boureanu 2017), we compared in the
introduction already, so now we only discuss other related
lines. (Morgan 2006) verify epistemic properties of pro-
grams not via dynamic logic, but by reasoning with an
ignorance-preserving refinement. Like here, their notion of
knowledge is based on observability of arbitrary domain
program variables. Also, this work has no relation with first-
order satisfaction nor translations of validity of program-
epistemic logics to that, nor their implementation.

On Dynamic Epistemic Logics (DEL). DEL (Dit-
marsch, Hoek, and Kooi 2007)) is a family of logics that
extend epistemic logic with dynamic operators. On the one
hand, DEL logics are mostly propositional, and their exten-
sions with assignment only considered propositional assign-
ment (e.g., (van Ditmarsch, van der Hoek, and Kooi 2005));
contrarily, we support assignment on variables on arbitrary
domains. Also, we have a denotational semantics of pro-
grams (via predicate transformers), whereas DEL operates
on more abstract semantics. On the other, action models
in DEL can describe complex private communications that
cannot be encoded with our current programming language.
The line on semi-public environments in DEL also builds in-
distinguishability relations from the observability of propo-
sitional variables (Wooldridge and Lomuscio 2001; Char-
rier et al. 2016; Grossi et al. 2016). (Grossi et al. 2017)

explores the interaction between knowledge dynamics and
non-deterministic choice/sequential composition.

Current DEL model checkers include DEMO (van Eijck
2007) and SMCDEL (Van Benthem et al. 2015). We are not
aware of the verification of DEL fragments being reduced to
satisfiability problems. An online report (Wang 2016) dis-
cusses –at some high level– the translation SMCDEL knowl-
edge structures into QBF and the use of YICES.

Other Works. (Gorogiannis, Raimondi, and Boureanu
2017) discussed work related more tenuously, such as on
general verification of temporal-epistemic properties of sys-
tems which are not programs in tools like MCMAS (Lomus-
cio, Qu, and Raimondi 2015), MCK (Gammie and van der
Meyden 2004), VERICS (Kacprzak et al. 2008), or one line
of epistemic verification of models specifically of JAVA
programs (Balliu, Dam, and Le Guernic 2012). (Gorogian-
nis, Raimondi, and Boureanu 2017) also discussed some
incomplete method of SMT-based epistemic model check-
ing (Cimatti, Gario, and Tonetta 2016), or even bounded
model checking techniques, e.g., (Kacprzak et al. 2006). All
those are only loosely related to us, so no reiteration needed.

Conclusions

Why This Methodology. The value of our methodology is
in the AI-based theory, a well-founded combination of dy-
namic and epistemic logic in a way that can be used to
systematically verify knowledge over programs in a man-
ner that was not possible before. This can be used for, e.g.,
private-information flow verification or explaining why a
decision was taken under partial information (Viganò and
Magazzeni 2018). Even if our implementation is not yet effi-
cient, we stress that this is a proof-of-concept that can be fur-
ther optimised by us leveraging in the future the full power
of the SMT-solver, without us foregoing quantifications into
disjunctions/conjunctions.

We defined a rich program-epistemic logic (mixing a
Kleene-star-free fragment of LDL (De Giacomo and Vardi
2013b) with knowledge operators) and showed that its
model checking problem can be reduced to SMT-solving.
Indeed, our translation from our epistemic-program logic to
FO logic treats a richer and more generic logic than ever
before, w.r.t. knowledge of programs. We implemented this
translation and tested it against a number of use-cases.

Acknowledgements

I. Boureanu and S. Rajaona were partly supported by the
EPSRC project “AutoPaSS”, EP/S024565/1.

Performances on Verifying the Dining-cryptographers Problem

More expressive than IJCAI 2017 --> we allow
𝑲𝒂𝑲𝒃𝝓 and operator 𝑲 even in front of operator □𝑪

Still faster than model checking

Yet Another Program-Epistemic Logics

IJCAI
2017

AAAI
2023

FM
2023

1 𝐾 possible before [𝑝𝑟𝑜𝑔] L no J yes J yes

2 only one agent L yes J no J no

3 program
public

L no NaN J yes

4 announcements no no yes

5 multiple assignments J yes J yes J no

6 efficiency x L 2x J x (due
to SSA)

improvements

Motivation & Aim

Program-Epistemic Logics

Verification Methods of These Logics

Practical Experimentations

Conclusions

Take-Home Message
• Programming languages and logics to model threads
•with each “reasoning” on values/knowledge/facts

• Program and logic semantics that models “intelligent” threads

• Good for privacy/ information-flow/rich non-interference properties

• Model checking delegated to SMT-solvers via translations to FO

• Implemented in Haskell here: https://github.com/UoS-SCCS/program-
epistemic-logic-2-smt

• Applied in the papers I spoke of to 3BV, dinning cryptographers, logic
puzzles;

• WIP: applied to fault tolerance protocols, an emulation of Uber booking, ZK
proof (Ali-Baba), membership proofs
…

https://github.com/UoS-SCCS/program-epistemic-logic-2-smt
https://github.com/UoS-SCCS/program-epistemic-logic-2-smt

Conclusions & Future Work

…

• We played with a. few program-expressing logics with
privacy/observability purposes

Future Work
• Beyond public action/perfect recall: private actions

and bounded recall

• Probabilistic programs, loops

Thank you

... for listening....

i.boureanu@surrey.ac.uk

*Images are copyrighted as per their source; pls. do not distribute without
checking

mailto:i.boureanu@surrey.ac.uk

