Epistemic Verification of Information-Flow Properties in Programs

Ioana Boureanu
Director of Surrey Centre for Cyber Security, UK
joint work @ IJCAI 2017, AAAI 2023, FM 2023,
with N. Gorogiannis (Facebook)
F. Raimondi (Gran Sasso Science Institute)
F. Belardinelli (Imperial College London)
V. Malvone (Télécom Paris)
F. Rajaona (Univ. of Surrey)

About me

$>$ PhD in non-classical logics for (security) verification \rightarrow Imperial College London
$>$ Post-doc in security and cryptography \rightarrow
$>\ldots$
$>$ Post-doc in security verification \& provable security \rightarrow
Imperial College London
> ...
> Professor in secure systems -->
SURREY

$$
\begin{aligned}
& \text { Today: FM for } \\
& \text { non-cryptographic } \\
& \text { "privacy" }
\end{aligned}
$$

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

Aim

- be able to verify information-flow or privacy-like properties of concurrent programs or threads

Thread 0

Thread 1

- threads can OBSERVE certain program variables and not necessarily the same
- Thread1 observes variable x; Thread2 observes variable y
- But the programme does $x:=y+5 \ldots$ somewhere
- Thread1 and Thread2 often may know the full program, or at least their program
- So, what does Thread1 know/learn about variable y? What does Thread1 know/learn about Thread2 knowing or doing something on variable y ?
- This is fine... seems well-known ...akin to .. non-interference, information-flow..

Aim

- Thread1 observes variable x; Thread2 observes variable y
- So, what does Thread1 know/learn about y? ...
- This is fine..., well-known even, non-interference, informationflow..
- But, ..
- NOT for "high-level" programs OR
- NOT expressive in the sense meant where... " what does Thread1 learn ...
non-interference properties
About 45,500 results $(0.28 \mathrm{sec}$)

Non-interference through determinism

AW Rossoe, JCP Woodcock, L Wuir - ... November 7-9, 1994 Proceedings 3, 1994 - Springer ... property of a process being deterministici is fundamental to the conditions we introduce for noninterference. ... IFF is the systam whose non-interference properties we attempt to establish of Save 9 多 Cite Cited by 169 Related articles All 10 versions

Approximate non-interference

A DI Plento. C Hankin ... - Joumal of Computer 2004 - contentiospress.com
.. the non-interference property undertying a type-based security analysis. Although non-Interference
is ... One of these is that absolute non-interference can hardly sver be achieved in real .
is Save 98 Cile Cited by 198 Related articies All 18 versions
Abstract non-interference: Parameterizing non-interference by abstract
interpretation
R Giacobazzi, IMastroeni - ACM SIGPLAN Notices, 2004 - dl.acm.org
. In this paper we generalize the notion of non-interference ... , whose task is to reveal
properties of confidential resources by ... basic properties of narrow and abstract noninterference.
i4 Save 哏Cite Cited by 241 Related articies All 7 versions aboutThread2 doing/knowing...?"

- Logic formulae expressing properties about program states: e.g.,
"Thread1 knows that variable x is equal to $y+5$ " "Thread2 does not know that variable x is equal to $y+5$ "

What expressivity we mean?

- epistemic logics, i.e., logics of knowledge - "knowing logical facts" \rightarrow expressions of rich properties (e.g., information flow, non-interference)
- well-used in verification of general-purpose concurrent \& distributed SYSTEMS (e.g., Byzantine agreement) via epistemic model checkers such as MCMAS, Verics, MCK, etc....
\equiv

Hmmm ...

- epistemic logics well-used in systems' model checkers systems BUT...

- :(these are NOT epistemic specifications on programs (like we mean here)
- :(it is hard to capture rich (e.g., first-order) state specifications, since the base logic of most epistemic verifiers is propositional
... meanwhile, base logics of programs are VERY expressive
- predicate transformers (e.g., weakest precondition) are used to reduce verification to FO queries to SMT solvers ...i.e., away from model-checking

Back to our aim

- be able to verify information-flow or non-interference properties of concurrent programs or threads, under their partial observability
- Focus on rich epistemic properties over program states: e.g.,
"Thread1 knows that when program C will executeThread2 knows variable x is equal to $y+5$ "

Thread 0

```
Thread I
```


- Q: Can we harness SMT solving' or shall we rely on epistemic model checking?

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

Syntax

Setup

$\rightarrow A$
$\rightarrow V$

- $p \subseteq V$
$-\mathbf{o l}_{A} \subseteq \mathrm{p}$
$-\mathbf{n}_{A}=\mathbf{p} \mid \mathbf{o}_{A}$
a finite set of threads or program-observers a countable set of variables a non-empty set of program variables
the variables the thread $A \in A$ can observe
variables thread $A \in A$ cannot observe

Syntax

First Epistemic Language L_{K}
$-L_{F O}$

> base language = a quantifier-free, FO language

$$
\varphi::=\pi|\neg \varphi| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \varphi_{1} \Rightarrow \varphi_{2}|\forall x . \varphi| \exists x . \varphi
$$

$-L_{K}$
extension of $L_{\text {QF }}$ with epistemic modalities K_{A}

$$
\alpha::=\pi|\neg \alpha| \alpha_{1} \wedge \alpha_{2}\left|\alpha_{1} \vee \alpha_{2}\right| \alpha_{1} \Rightarrow \alpha_{2} \mid \mathrm{K}_{A} \alpha
$$

First Program-Epistemic Specifications $L_{\square K}$

a (possibly infinite) set of commands extends L_{K} with every formula $\beta=\square_{C} \alpha$, meaning "at all final states of C, α holds"

Example

"at the end of the vote-counting, a partial-observing thread thread1 (who can see certain aspects of the program) does not know that voter 1 vote for candidate 1":

$$
\square_{\text {EVotingProgram }} \neg K_{\text {thread } 1} V_{1,1}
$$

where $V_{1,1}$ is a formula in $L Q F$ which here is linear integer arithmetic.

First-order Semantics

- state
- set of all states

$$
\begin{array}{lll}
s \models \pi & \Longleftrightarrow & \text { in accordance to interpretation I } \\
s \models \phi_{1} \circ \phi_{2} & \Longleftrightarrow & \left(s \models \phi_{1}\right) \circ\left(s \models \phi_{2}\right) \\
s \models \neg \phi & \Longleftrightarrow & s \neq \phi \\
s \models \exists x \cdot \phi & \Longleftrightarrow \exists c \in \mathcal{D} \cdot s[x \mapsto c] \models \phi \\
s \models \forall x \cdot \phi & \Longleftrightarrow & \forall c \in \mathcal{D} \cdot s[x \mapsto c] \models \phi .
\end{array}
$$

where \circ is \wedge, \vee or \Rightarrow, and I is an interpretation of constants, functions and predicates in $\mathcal{L}_{\text {QF }}$ over the domain \mathcal{D}.
The interpretation $\llbracket \phi \rrbracket$ of a first-order formula ϕ is the set of states satisfying it, i.e., $\llbracket \phi \rrbracket=\{s \in \mathcal{U} \mid s \models \phi\}$

Towards a Program-Epistemic Semantics

- Indistinguishability relation \sim_{x} over states

$$
s \sim_{x} s^{\prime} \Longleftrightarrow \forall x \in X .\left(s(x)=s^{\prime}(x)\right)
$$

where $X \subseteq \mathcal{V}$

- Transition relation (over states) of any command C

$$
R_{C}(s)=\left\{s^{\prime} \mid\left(s, s^{\prime}\right) \in R_{C}\right\} \quad R_{C}(W)=\bigcup_{s \in W} R_{C}(s)
$$

- strongest postcondition operator is a partial function $S P(-,-): \mathcal{L}_{\mathrm{FO}} \times \mathcal{C} \rightharpoonup \mathcal{L}_{\mathrm{FO}}$

$$
S P(\phi, C)=\psi \quad \text { iff } \quad \llbracket \psi \rrbracket=R_{C}(\llbracket \phi \rrbracket)
$$

Interpretation of a program specification β

The satisfaction relation $W, s \Vdash \beta$

$$
\begin{array}{ll}
W, s \Vdash \pi & \Longleftrightarrow s \models \pi \\
W, s \Vdash \neg \alpha & \Longleftrightarrow W, s \Vdash \alpha \\
W, s \Vdash \alpha_{1} \circ \alpha_{2} & \Longleftrightarrow\left(W, s \Vdash \alpha_{1}\right) \circ\left(W, s \Vdash \alpha_{2}\right) \\
W, s \Vdash K_{A} \alpha & \Longleftrightarrow \forall s^{\prime} \in W .\left(s \sim_{A} s^{\prime} \neq W, s^{\prime} \Vdash \alpha\right) \\
W, s \Vdash \square_{c} \alpha & \Longleftrightarrow \forall s^{\prime} \in R_{C}(s) .\left(R_{C}(W), s^{\prime} \Vdash \alpha\right)
\end{array}
$$

where \circ is \wedge, \vee, or \Rightarrow, and $C \in \mathcal{C}$ is a command.

- Validity of program specifications $\phi \Vdash \beta$ for all $\boldsymbol{s} \in \llbracket \phi \rrbracket$, we have that $\llbracket \phi \rrbracket, \boldsymbol{s} \Vdash \beta$.
$\phi \Vdash \mathrm{K}_{A} \pi \quad$ means that in all states satisfying ϕ, thread A knows π
$\phi \Vdash \square_{C} \neg K_{A} \pi$ means that if command C starts at a state satisfying ϕ, then in all states where the execution finishes, thread A does not know π

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

First Reduction to First-Order Validity

- Validity of program specifications $\phi \Vdash \beta$ for all $\boldsymbol{s} \in \llbracket \phi \rrbracket$, we have that $\llbracket \phi \rrbracket, \boldsymbol{s} \Vdash \beta$.
- Recall: strongest postcondition operator is a partial function $\operatorname{SP}(-,-): \mathcal{L}_{\mathrm{FO}} \times \mathcal{C} \rightharpoonup \mathcal{L}_{\mathrm{FO}}$

$$
S P(\phi, C)=\psi \quad \text { iff } \quad \llbracket \psi \rrbracket=R_{C}(\llbracket \phi \rrbracket)
$$

If the strongest postcondition operator is computable for the chosen base logic/programming language, then validity of program-epistemic specifications reduces to validity in first-order fragments (such as QBF and Presburger arithmetic).
translation $\tau: \mathcal{L}_{\mathrm{K}} \rightarrow \mathcal{L}_{\mathrm{FO}}$ of epistemic formulas into the first-order language

$$
\begin{array}{ll}
\tau(\phi, \pi)=\pi & \tau\left(\phi, \alpha_{1} \circ \alpha_{2}\right)=\tau\left(\phi, \alpha_{1}\right) \circ \tau\left(\phi, \alpha_{2}\right) \\
\tau(\phi, \neg \alpha)=\neg \tau(\phi, \alpha) & \tau\left(\phi, \mathrm{K}_{A} \alpha\right)=\forall \mathbf{n}_{A} \cdot(\phi \Rightarrow \tau(\phi, \alpha))
\end{array}
$$

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

Loop-Free Example Programming Language

Command C	$S P(\phi, C)$
$x:=*$	$\exists y . \phi[y / x]$
$x:=e$	$\exists y .(x=e[y / x] \wedge \phi[y / x])$
$i f(\pi) C_{1}$ else C_{2}	$S P\left(\pi \wedge \phi, C_{1}\right) \vee S P\left(\neg \pi \wedge \phi, C_{2}\right)$
$C_{1} ; C_{2}$	$S P\left(S P\left(\phi, C_{1}\right), C_{2}\right)$,

where x is a program variable and y is a fresh logical variable.

- $S P(-,-)$ may only introduce existential quantifiers.
- If $x \notin F V(\phi)$, then $S P(\phi, x:=e)=(\phi \wedge x=e)$. That is, if x is unrestricted, no quantifiers are introduced.
- For a fixed C, the size of $S P(\phi, C)$ is polynomial in $\|\phi\|$.
- Enough to express .. somewhat... simple communication protocols, anonymity-driven systems, knowledge proofs...

Three Ballot Voting

- for a candidate, exactly two atomic ballots.
- against a candidate, exactly one atomic ballot.

Here:

- Vote privacy
- No active attacker

Three Ballot Specifications

- $m>2$ candidates
$\boldsymbol{c}_{\boldsymbol{j}}$ total number of atomicballot ticks for candidate j
n > 2 voters
- L_{QF} linear integer arithmetic
$\boldsymbol{b}_{i j k}$ if voter i ticked next to candidate j on the k-th atomic ballot
- Threads $A=\{1, . ., n ; P\}$: voters $+P$ is a 'public observer'/ general program
- Program variables

$$
\begin{aligned}
& \mathbf{p}=\bigcup_{j=1}^{m}\left\{c_{j}\right\} \cup \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} \bigcup_{k=1}^{3}\left\{b_{i j k}\right\} \\
& \mathbf{o}_{i}=\bigcup_{j=1}^{m}\left\{c_{j}\right\} \cup \bigcup_{j=1}^{m} \bigcup_{k=1}^{3}\left\{b_{i j k}\right\}
\end{aligned}
$$

- Observable variables

$$
\mathbf{o}_{P}=\bigcup_{j=1}^{m}\left\{c_{j}\right\}
$$

- Non-observable variables

$$
\mathbf{n}_{i}=\mathbf{p} \backslash \mathbf{o}_{i}
$$

- Vote Counting (the number of ticks voter i has entered

$$
S_{i, j} \equiv \sum_{k=1}^{3} b_{i j k}
$$ for candidate j)

- Program C

$$
c_{1}:=\sum_{i=1}^{n} S_{i, 1} ; \ldots ; c_{m}:=\sum_{i=1}^{n} S_{i, m}
$$

- L_{QF} Presburger arithmetic

Three Ballot Specifications (cont'd)

- Macros to model the protocol

$$
\begin{aligned}
S_{i, j} & \equiv \sum_{k=1}^{3} b_{i j k} \\
B & \equiv \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m} \bigwedge_{k=1}^{3}\left(b_{i j k}=0 \vee b_{i j k}=1\right) \\
V_{i, j} & \equiv\left(S_{i, j}=2\right) \\
\bar{V}_{i, j} & \equiv\left(S_{i, j}=1\right) \\
C V_{i}^{\geq 0} & \equiv \bigvee_{j=1}^{m} V_{i, j} \\
C V_{i}^{\leq 1} & \equiv \bigwedge_{j=1}^{m}\left(V_{i, j} \Rightarrow \bigwedge_{j^{\prime}=1, j^{\prime} \neq j}^{m} \bar{V}_{i, j^{\prime}}\right) \\
C V & \equiv \bigwedge_{i=1}^{n}\left(C V_{i}^{\geq 0} \wedge C V_{i}^{\leq 1}\right) \\
N U & \equiv \bigwedge_{j=1}^{m} \bigvee_{i=1}^{n} V_{i, j} \\
N U_{\bmod i} & \equiv \bigwedge_{j=1}^{m} \bigvee_{i^{\prime}=1, i^{\prime} \neq i}^{n} V_{i^{\prime}, j} \\
I & \equiv B \wedge C V \wedge N U \\
I_{\bmod i} & \equiv B \wedge C V \wedge N U_{\bmod i}
\end{aligned}
$$

$$
S P(I, C)=I \wedge\left(\mathbf{c}=\left(\sum_{i=1}^{n} S_{i, 1}, \ldots, \sum_{i=1}^{n} S_{i, m}\right)\right) \quad \mathbf{c} \text { is the tuple }\left(c_{1}, \ldots, c_{m}\right)
$$

Three Ballot Specifications (cont'd)

$\alpha_{1}=\neg \mathrm{K}_{P} V_{1,1}$
$\alpha_{2}=\neg \mathrm{K}_{1} V_{2,1}$
the observer P does not know that voter 1 voted for candidate 1
voter 1 does not know that voter 2 voted for candidate 1

Vote Privacy Verification

$$
I \Vdash \square_{C} \alpha_{1}
$$

$$
S P(I, C)=I \wedge\left(\mathbf{c}=\left(\sum_{i=1}^{n} S_{i, 1}, \ldots, \sum_{i=1}^{n} S_{i, m}\right)\right)
$$

$$
I_{\bmod 1} \Vdash \square_{C} \alpha_{2}
$$

$I \Vdash \square_{C} \alpha_{2}$
translation of K formulae
=> Presburger formulas +

Experimental Results (on a simple laptop)

Other Experimental Results

So, where are we?

- () we "played" with some logics, .. We gave program-epistemic specifications, expressing requirements that given epistemic properties hold on all final states of the program
-) we have an efficient method of reducing the validity of programepistemic specifications to appropriate queries to SMT solvers
- : space for improvements...
...

epistemic K_{A} operator can appear only after program \square_{C} operator..., we cannot have $\mathrm{K}_{\mathrm{A}} \mathrm{K}_{\mathrm{B}} \boldsymbol{\phi}$.. , meaning we cannot have more than one agent "knowing"

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

Second Program-Epistemic Language

epistemic K_{A} operator can appear only after program \square_{C} operator...,

If we want the program operator and the epistemic operator to commute, perhaps link the program language and the logic more?

Programs, e.g., assignments, leak information; perhaps, we can model this program "leak" via logics: announcement logics [Plaza'89]

Ali-Baba's Cave Zero Knowledge

Peggy randomly takes either path A or B , while Victor waits outside

Victor chooses an exit path

Peggy reliably appears at the exit Victor names

Peggy

- announces
"success on path $x_{1}{ }^{\prime \prime}$
- announces "success on path $x_{2}{ }^{\prime \prime}$
- announces "success on path $x_{3}{ }^{\prime \prime}$

Second Program-Epistemic Language

[FM'23]
$>$ perhaps link the program language and the logic more?
> Announcement logics [Plaza ‘89] ...

Program Syntax $\quad P::=\alpha$?

$x_{G}:=e$	(assignment)
new $k_{G} \cdot P$	(declare k visible to G)
$P ; Q$	(sequential composition)
$P \sqcap Q$	(nondeterministic choice)

Second Epistemic Logic Syntax $\mathcal{L}_{\mathcal{P}}$

(atomic predicate) (conjunction) (negation) (knowledge modality) (public announcement formula)
(universal quantification)

Let's re-think relational semantics (for the new $\boldsymbol{\mathcal { L }}_{\mathcal{P}} \ldots$...)

- $R(v: \equiv x ; v: \equiv 0, \omega) \equiv R(v: \equiv 0, \omega)$
(wrong if the thread knows the program)
- $w p(v:=x, \alpha)=\alpha[v \backslash x]$

Example

$x \in\{0,1\}, v$ is visible, and x a secret
Does the program $P=v:=x$ leaks the secret x ?

$$
w p(v:=x, K(x=0) \vee K(x=1))=K(x=0) \vee K(x=1)[v \backslash x]
$$

True ${ }^{\prime}$

What if the program $P=(v:=x \sqcap v:=\neg x)$?
depends on the thread's observability of program execution

Relational Semantics for $\mathcal{L}_{\mathcal{P}} \ldots$.

So, it depends on a few things and it is not obvious
For public programs, ...

$$
\begin{aligned}
R_{W}(P \sqcap Q, s) & =\left\{s^{\prime}\left[c_{A g} \mapsto I\right] \mid s^{\prime} \in R_{W}(P, s)\right\} \\
& \cup\left\{s^{\prime}\left[c_{A g} \mapsto r\right] \mid s^{\prime} \in R_{W}(Q, s)\right\} \\
R_{W}(P ; Q, s) & =\bigcup_{s^{\prime} \in R_{W}(P, s)}\left\{R_{R_{W}^{*}}(P, W)\left(Q, s^{\prime}\right)\right\} \\
R_{W}\left(x_{G}:=e, s\right)= & \left\{s\left[k_{G} \mapsto s\left(x_{G}\right), x_{G} \mapsto s(e)\right]\right\} \\
R_{W}\left(\text { new } k_{G} \cdot P, s\right)= & R_{W}^{*}\left(P,\left\{s\left[k_{G} \mapsto d\right] \mid d \in \mathrm{D}\right\}\right) \\
R_{W}(\beta ?, s) & =\text { if }(W, s) \models \beta \text { then }\{s\} \text { else } \varnothing
\end{aligned}
$$

Second, More Expressive Program-Epistemic

Language

Program-Epistemic Logic $\mathcal{L}_{P K}$

- $\square_{P}(K v($ secret $\bmod 2))$
- $K(\square$ psecret $\bmod 2=0)$

K in front of program

- $\square_{D C}\left(K_{0}\left(x \Leftrightarrow \bigvee_{i=0}^{n-1} p_{i}\right)\right)$
$(W, s) \models[\beta] \alpha \quad$ iff $(W, s) \models \beta$ implies $\left(W_{\mid \beta}, s\right) \models \alpha$
$(W, s) \models \square_{P} \alpha \quad$ iff for all $s^{\prime} \in R_{W}(P, s),\left(R_{W}^{*}(P, W), s^{\prime}\right) \models \alpha$
$(W, s) \models \forall x_{G} \cdot \alpha$ iff for all $c \in \mathrm{D},\left(\bigcup_{d \in \mathrm{D}}\left\{s^{\prime}\left[x_{G} \mapsto d\right] \mid s^{\prime} \in W\right\}, s\left[x_{G} \mapsto c\right]\right) \models \alpha$

Program-based Semantics for $\mathcal{L}_{\mathrm{K}} \ldots$

Linking programs and formula "tighter" than in the first attempt wp : $\mathcal{L}_{P} \times \mathcal{L}_{K} \rightarrow \mathcal{L}_{K}$
$w p(P \sqcap Q, \alpha)=w p(P, \alpha) \wedge w p(Q, \alpha)$
$w p(P ; Q, \alpha)=w p(P, w p(Q, \alpha))$
$w p\left(x_{G}:=e, \alpha\right) \quad=\forall k_{G} \cdot\left[k_{G}=e\right]\left(\alpha\left[x_{G} \backslash k_{G}\right]\right)$
$w p\left(\right.$ new $\left.k_{G} \cdot P, \alpha\right)=\forall k_{G} \cdot w p(P, \alpha)$
$w p(\beta ?, \alpha)=[\beta] \alpha$

Relational semantics at states and this WP-based semantics at formulae coincide

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

$\mathcal{L}_{\mathcal{P K}}$ Model Checking as First-Order (Un)satisfiability

Main theorem

- $\llbracket \phi \rrbracket$ a set of states satisfying FO formula ϕ
- $\alpha \in \mathcal{L}_{P K}$

$$
\llbracket \phi \rrbracket \models \alpha \Leftrightarrow \text { FO formula } \phi \wedge \neg \tau(\phi, \alpha) \text { unsatisfiable }
$$

where $\tau: \mathcal{L}_{F O} \times \mathcal{L}_{P K} \rightarrow \mathcal{L}_{F O}$

$$
\begin{aligned}
\tau(\phi, \pi) & =\pi & & \tau\left(\phi, K_{a} \alpha\right)
\end{aligned}=\forall \mathbf{n} \cdot(\phi \rightarrow \tau(\phi, \alpha))
$$

One "go" translation for the "full" logic, unlike before

$\mathcal{L}_{\mathcal{P K}}$ Model Checking as First-Order (Un)satisfiability

Main theorem

[FM2023]

- \| ϕ a set of states satisfying FO formula ϕ
- $\alpha \in \mathcal{L}_{P K}$

$$
\llbracket \phi \rrbracket \models \alpha \Leftrightarrow \text { FO formula } \phi \wedge \neg \tau(\phi, \alpha) \text { unsatisfiable }
$$

- Mechanised the translation in Haskell

7 tau :: ModalFormula \rightarrow Formula $a \rightarrow$ ModalFormula
28 tau phi (Atom p)
$=$ Atom p
$=$ Neg (tau phi alpha)
29 tau phi (Neg alpha)
$=$ Conj [tau phi $a \mid a<-a s$]
$=$ Disj [tau phi $a \mid a<-a s$]
30 tau phi (Conj as)
31 tau phi (Disj as)
$=$ tau phi alpha1 \rightarrow tau phi alpha2
33 tau phi (Equiv alpha1 alpha2) $=($ tau phi (alpha1 \rightarrow alpha2)) \wedge (tau phi (alpha2
34 tau phi (K ag alpha) $=$ mkForAll (nonobs ag) (phi \rightarrow tau phi alpha)
35 tau phi (Ann beta alpha) = tau phi beta \rightarrow tau (phi \wedge (tau phi beta)) alpha
36 tau phi (Box p alpha) = tau phi (wp alpha p)
37 tau phi (ForAllB n alpha) $=$ ForAllB n (tau phi alpha)
38 tau phi (ExistsB n alpha) = ExistsB n (tau phi alpha)
39 tau phi (ForAllI n d alpha) = ForAllI n d (tau phi alpha)
40 tau phi (ExistsI n d alpha) $=$ ExistsI n d (tau phi alpha)

$\mathcal{L}_{\mathcal{P K}}$ Model Checking as First-Order (Un)satisfiability

! Experiments before (knowledgebased information flow in programs for voting, anonymous communication, ...,), BUT more expressive and a bit slower

n	Formula β_{1}		Formula β_{2}			Formula β_{3}		Formula γ	
	$\tau_{w p}+\mathrm{Z3}$	$\tau_{S P}+\mathrm{Z3}$	$\tau_{w p}+\mathrm{CVC5}$	$\tau_{w p}+\mathrm{Z3}$	$\tau_{S P}+\mathrm{Z3}$	$\tau_{w p}+\mathrm{Z3}$	$\tau_{S P}+\mathrm{Z3}$	$\tau_{w p}+\mathrm{Z} 3$	$\tau_{S P}+\mathrm{Z3}$
10	0.05 s	4.86 s	0.01 s	N/A					
50	31 s	t.o.	0.41 s	0.05 s	0.06 s	0.03 s	0.02 s	0.03 s	N/A
100	t.o.	t.o.	3.59 s	0.15 s	0.16 s	0.07 s	0.06 s	0.07 s	N/A
200	t.o.	t.o.	41.90 s	1.27 s	0.71 s	0.30 s	0.20 s	0.30 s	N/A

...("SP" stands for the previous method at IJCAI17)

So, why and ...are we done?

How come we do not depreciate so much in efficiency, even if we allow $K_{a} K_{b} \phi$ and operator K even in front of operator \square_{C} ?
$>$ public announcement \rightarrow model update/shrinking

How come we can allow the program operate and the K operator to commute?
$>$ Single assignment of variables ..!!

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

Yet Another Program-Epistemic Logics ... [AAA12023]

> Similar to the ones you saw (perhaps a "mix" of the two), but
$>$ no public announcements
$>$ the programs are modelled with dynamic logics [Vardi2013]
$>$ Assignments different via substitutions

Logic

$$
\begin{aligned}
\alpha & ::=\pi|\neg \alpha| \alpha \wedge \alpha\left|\left(\mathrm{K}_{a} \alpha\right)[\vec{x} / \vec{e}]\right|[\rho] \alpha \\
\rho & ::=x:=e \mid \phi ?
\end{aligned}
$$

$$
\begin{aligned}
& (W, s) \models\left(K_{a} \alpha\right)[\vec{x} / \vec{e}] \text { iff for all } s^{\prime} \in W, \\
& s^{\prime} \sim_{\vec{o}_{a}} s[\vec{x} \mapsto s(\vec{e})] \text { implies } \\
& \left(W, s^{\prime}\right) \models \alpha \\
& (W, s) \models[\rho] \alpha \quad \text { iff for all } s^{\prime} \in R_{\rho}(s),\left(R_{\rho}(W), s^{\prime}\right) \models \alpha
\end{aligned}
$$

We get derived dynamic operators ..

$$
\begin{aligned}
{\left[\rho ; \rho^{\prime}\right] \alpha } & ::=[\rho]\left[\rho^{\prime}\right] \alpha \\
{\left[\rho \sqcup \rho^{\prime}\right] \alpha } & ::=[\rho] \alpha \vee\left[\rho^{\prime}\right] \alpha
\end{aligned}
$$

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

Practical Experimentation

	SAT (AAAI 2023)			SAT (IJCAI 2017)			Model Checking (MCMAS)		
Formula	result	time		result	$n=5$	time	result	time	
		$n=5$	$n=10$			$n=10$		$n=5$	$n=10$
$\neg \alpha_{1}$	unsat	0.07s	70s	unsat	0.03 s	0.1 s	unsat	0.17s	0.18 s
$\neg \alpha_{2}$	unsat	0.03s	- 7 s	unsat	0.02 s	0.1 s	unsat	0.10s	0.12 s
$\neg \alpha_{2}^{\prime}$ ()	unsat	0.15 s	$17 \mathrm{~s}$	N/A	-	0.1 s	unsat	0.20 s	0.25 s
$\neg \alpha_{3}$	sat	0.04 s	7 s	sat	0.01s	0.1s	sat	0.10s	0.12 s

Performances on Verifying the Dining-cryptographers Problem

More expressive than IJCAI 2017 --> we allow $K_{a} K_{b} \phi$ and operator K even in front of operator \square_{C}

Yet Another Program-Epistemic Logics

improvements

		$\begin{aligned} & \text { IJCAI } \\ & 2017 \end{aligned}$	$\begin{aligned} & \text { AAAI } \\ & 2023 \end{aligned}$	$\begin{aligned} & \text { FM } \\ & 2023 \end{aligned}$
1	K possible before [prog]	\bigcirc no	() yes	() yes
2	only one agent	\bigcirc yes	() no	() no
3	program public	(3) no	NaN	() yes
4	announcements	no	no	yes
5	multiple assignments	() yes	() yes	() no
6	efficiency	X	* $2^{\text {x }}$	$\begin{aligned} & \text { : x (due } \\ & \text { to SSA) } \end{aligned}$

Motivation \& Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations
Conclusions

Take-Home Message

- Programming languages and logics to model threads -with each "reasoning" on values/knowledge/facts
- Program and logic semantics that models "intelligent" threads
- Good for privacy/ information-flow/rich non-interference properties
- Model checking delegated to SMT-solvers via translations to FO
- Implemented in Haskell here: https://github.com/UoS-SCCS/program-epistemic-logic-2-smt
- Applied in the papers I spoke of to 3BV, dinning cryptographers, logic puzzles;
- WIP: applied to fault tolerance protocols, an emulation of Uber booking, ZK proof (Ali-Baba), membership proofs

Conclusions \& Future Work

- We played with a. few program-expressing logics with privacy/observability purposes

Future Work

- Beyond public action/perfect recall: private actions and bounded recall
- Probabilistic programs, loops

Thank you

... for listening....

i.boureanu@surrey.ac.uk
*Images are copyrighted as per their source; pls. do not distribute without checking

