Epistemic Verification of Information-Flow
Properties in Programs

loana Boureanu
Director of Surrey Centre for Cyber Security, UK

joint work @ IJCAI 2017, AAAI 2023, FM 2023,

with N. Gorogiannis (Facebook)
F. Raimondi (Gran Sasso Science Institute)
F. Belardinelli (Imperial College London)
V. Malvone (Télécom Paris) .

F. Rajaona (Univ. of Surrey) =

2 S0k

About me

» PhD in non-classical logics for (security) verification > Imperlal College

London
» Post-doc in security and cryptography - Hg!y)ﬂ&

FEDERALE DE LAUSANNE

> ..

» Post-doc in security verification & provable security > Impe”al College
London

> ..

UNIVERSITY OF

% SURREY

» Professor in secure systems -->

My work: Today: FM for
> Formal methods > non-cryptographic
» Provable Security / Formal Verification “privacy”

» Applied Cryptography

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

Aim

» be able to verify information-flow or privacy-like properties of

concurrent programs or threads . :
Thread 0 0——%—»@—- |
Thread 1 :

» threads can OBSERVE certain program variables and not
necessarily the same

» Thread1 observes variable x; Thread2 observes variable y
» But the programme does x:= y+ 5 ... somewhere

» Thread1 and Thread2 often may know the full program, or at
least their program

» So, what does Thread1 know/learn about variable y?

What does Thread1 know/learn about Thread2 knowing or
doing something on variable y?

» Thisis fine... seems well-known ...akin to .. non-interference, @
information-ﬂOW.. IRREY

&

Aim
» Thread1 observes variable x; Thread2 observes variable y
» So, what does Thread1 know/learn about y? ...
» Thisis fine..., well-known even, non-interference, information-

flow. S
» NOT for “high-level” programs e Mﬂ;

OR SR
» NOT expressive in the sense meant
where... “what does Thread1 learn ...

aboutThread?2 doing/knowing...?”

» Logic formulae expressing properties about program states: e.g.,

“Thread1 knows that variable x is equaltoy + 5”
“Thread2 does not know that variable x is equaltoy + 5”

What expressivity we mean?

» epistemic logics, i.e., logics of knowledge — “knowing logical
facts” » expressions of rich properties (e.g., information
flow, non-interference)

» well-used in verification of general-purpose concurrent &
distributed SYSTEMS (e.g., Byzantine agreement) via epistemic
model checkers such as MCMAS, Verics, MCK etc....

00 New directions in model checking dynamic epistemic logic

M Gattinger - 2018 - eprinis.llc.wvanl
For
Final,
Y Save U9 Cilo Citogby 18 Related artices All4 versions »

checking
#r Save 99 Cie Ci

Model checking probabilistic epistemic logic for probabilstic multiagent
stems

C Fu, A Turtin, X Huang, L Song.. - .. OF THE TWENTY .. 201 - lreposioryliverpoolac.uk

% Save 99 Cile Clledby 13 Related aricies Al versions 50

Symbolic model checking for dynamic epistemic logic—S5 and beyond
e mic.oup.com

=

S SCIRE

Hmmm ...

» epistemic logics well-used in systems’ model checkers
systems BUT...

GOOD TRY, 0LD BEAN,
2

» :(these are NOT epistemic specifications on programs (like we mean here)

» :(itis hard to capture rich (e.g., first-order) state specifications,
since the base logic of most epistemic verifiers is propositional
... meanwhile, base logics of programs are VERY expressive

» predicate transformers (e.g., weakest precondition) are used to reduce
verification to FO queries to SMT solvers ...i.e., away from model-checking

&
5
e
o

Back to our aim

» be able to verify information-flow or non-interference properties of
concurrent programs or threads, under their partial observability

|
| o I
\ Thread 0 M |
| I
| I
| Thread 1 |
. I
p->0p, Op, ~0~p, OP >
p, op V ~0p, ,~0p >

0-0p, ~~0p V 0-0p, gp

V GmOp, COp > 0P,
op V o-p, op, P,

» Focus on rich epistemic properties
over program states: e.g.,

“Thread1 knows that when program C will
executeThread?2 knows variable x is
equaltoy + 5”

SMT solver ' - A -
s] e SHTSaher | o0
» Q: Can we harness tatoion| |y | = '
SMT solving’ or shall | e |
we rely on epistemic s P o

model checking? /0

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

Syntax
> A
>V
»pcV
>»0ACE P

»na=ploa

Setup

a finite set of threads or program-observers
a countable set of variables

a non-empty set of program variables

the variables the thread A € A can observe
variables thread A € A cannot observe

@

sty

First Epistemic Language Lk

[IJCAI'17]
»Lor base language = a quantifier-free, FO language
» Lo extension of Lar with quantifiers

Q=1 [=@ @1 A@2 @1V @2 [p1= @2 |[Vx. @ [Ix.¢@

» Lk extension of Lqr with epistemic modalities Ka

ax=m|-a|larha2 a1 Va2 |a1= a2 |Kaa

=\
)
 SORKEY

First Program-Epistemic Specifications Lk

»C a (possibly infinite) set of commands

» Lok extends Lk with every formula 8 = O¢a,
meaning “at all final states of C, a holds”

Example
“at the end of the vote-counting, a partial-observing thread thread1
(who can see certain aspects of the program) does not know that
voter 1 vote for candidate 17

I:IEVottingProgram _'Kthreadlvl,l

where V1,1 is a formula in LarF which here is linear integer arithmetic. =

£ SURRE

First-order Semantics

/2
» state s:V—D.
» set of all states U
SET <= in accordance to interpretation /
SE¢1og = (SEd1)o(sk ¢2)
Sk ¢ = Sk
S = 3x.¢ < dceD.sx—clEo
SEVx.9 < VceD.s[x—c|E o

where o is A, V or =, and / is an interpretation of constants,
functions and predicates in Lo over the domain D.

The interpretation [¢] of a first-order formula ¢ is the set of
states satisfying it, i.e., [¢] = {s €U | s = ¢}

&
5
e
o

Towards a Program-Epistemic Semantics

Y i e
Q) {3
L WP

» Indistinguishability relation ~x over states

s~x S8 < Vxe X.(s(x) =5(x)),
where X C V

» Transition relation (over states) of any command C

Ro(s)={s'|(s,s) € Rc} Rc(W) =Usew Rc(s)

» strongest postcondition operator is a partial function
SP(—, —) :Lro X C — Lro

SP(¢,C) =4 it [¢] = Re([¢])

)
5 SRRV

Interpretation of a program specification 8
The satisfaction relation W, s I+ 3

W,slFmr < SkET7

W,slF -« — W,slfa

W.slFajoap <= (W,slkFaq)o(W,slkap)
W,slFKaa <<= Vs'eW.(S~p, 8= W,dIFa)
W,slFOca <= Vs € Rg(S).(Re(W), s IF a)

where o is A, V, or =, and C € C is a command.
» Validity of program specifications ¢ I- 3
for all s € [¢], we have that [¢], s IF 5.

¢ |- Kam means that in all states satisfying ¢, thread A knows

6 I+ Oc—Kam Mmeans that if command C starts at a state satisfying ¢,

then in all states where the execution finishes, —
thread A does not know o

@

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

First Reduction to First-Order Validity m

» Validity of program specifications ¢ I+ 3 T c
for all s € [¢], we have that [¢], s IF $. \)@5‘\0\,6
vt S yaeo
N ey
» Recall: strongest postcondition operator is a partial e 6@\ c \ \l‘\(\Q'
function SP(—,) : Lro X C = Lfo WO~ < &0
5

SP(¢,C) =4 iff [y] = Re([¢])

If the strongest postcondition operator is computable for the
chosen base logic/programming language, then validity of
program-epistemic specifications reduces to validity in
first-order fragments (such as QBF and Presburger arithmetic).

translation 7 : Lk — Lo of epistemic formulas into the first-order language

T(¢7 7T) =T 7—(¢7 Q4 O a2): T(¢a 041) o T(¢7 042) o
(¢, ma)= =7(¢, o) T(d,Kaa) =Vnu. (¢ = 7(¢,) <

2 S0k

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

Loop-Free Example Programming Language

Command C SP(¢, C)

X =% Jy. dly/x]

X:=e Jy. (x = ely/x] A dly/x])
if(m) Cr else Co SP(m A ¢,Cqp)V SP(—7 A ¢, Co)
C1;Cz SP(SP(an C1)’CZ)7

where x is a program variable and y is a fresh logical variable.

» SP(—, —) may only introduce existential quantifiers.

» If x ¢ FV(¢), then SP(¢,x :=e) = (¢ A x =e). Thatis, if x
is unrestricted, no quantifiers are introduced.

» For afixed C, the size of SP(¢, C) is polynomial in ||¢||.

. Enough to express .. somewhat... simple communication
protocols, anonymity-driven systems, knowledge
proofs...

@

Three Ballot Voting

A @6A ©
B OB O
C OC o

ID
1

» for a candidate, exactly two
atomic ballots.

()« against a candidate, exactly

one atomic ballot.

O 0>
®

ID
3

Here:
+ Vote privacy
* No active attacker

@

sty

Three Ballot Specifications

¢; total number of atomic-
ballot ticks for candidate j

m > 2 candidates
n > 2 voters

by if voter i ticked next to candidate j
on the k-th atomic ballot

Lor linear integer arithmetic

Threads A ={1, .., n; P}: voters + P is a ‘public observer’/ general program

i 3

Program variables p= U;,”:l{cj} uur, U;":l Ur—1{bijx}

Observable variables 0 = UL {e;} UL, Ui, {biji}
op = UL {¢;}

Non-observable variables n;=p\o;

Vote Counting (the number of ticks voter i has entered Sij = 22:1 bijk

for candidate j)

Program C cri= D1 Sin; e Cmi= Yy Sim

Lqr Presburger arithmetic

&
5
e
o

Three Ballot Specifications (cont'd)
* Macros to model the protocol
Sii = Lo bigh

B= /\?:1 /\;7121 /\2:1(bijk =0V bijk = 1)

Voting for at
least and at

most a
Viji=(Si;=2) candidate
Vij=(Si;=1)

>0 _ \/m Non-unanimit
CVi = \/j:1 Vi Y

CVE = /\T:l (ViJ = /\;7:1,3'/7&]' Vi,j’)
CV=NL OV A OV
NU = /\;n:1 Viei Vi

NUnoai = /\;nzl VZ:LZ"#?; Vi
I=BANCV ANU
Todi = BACV A NUpoa s

Initial states

SP(I,C)=1IA(c= (11 Sin,--» 2 qSim)) cis the tuple (cq, .

cCm) e

2 S0k

Three Ballot Specifications (cont'd)

a; = “KpVi the observer P does not know that voter 1 voted for candidate 1

as = =K Vo voter 1 does not know that voter 2 voted for candidate 1

Vote Privacy Verification

I'lFOcay SP(I,C) = IA (c= (X0 Sia - 00, Sim))
Imoa1 IF Ocae "
Il Ocas translation of K formulae

=> Presburger formulas +

Experimental Results (on a simple laptop)

10° m
= ,a
m =g, a;:
104 M= ¢, a3 : i
mogas |
pr— y =
3 Hn = ,a%
~10° iIm=2, a3 -
3 Hm =2, o
n m=9, a3 ;
o107 1 :
) L :
=
=10 L 5 *
" D//{ 3]
100 = L& 8
L =5 O P
p—a—a=b = 7§‘§4_m
10—1 | | | |
5 10 15 20

Number of voters

> STRIEY

Other Experimental Results

105
104
103
9. 2
g10
£101
E
100
10-1

10-2

2
.

L R
L T
S
L e a
= T =
L " T,]
L #ﬁ### o i
+#++++W*+

j L ++++++ |
[T X %% Xx%]
[+++*’*1ur 2 X, Kol X% W&% e e
F e 5% S IIRRE R AT

= <. &

RRRTRSERRE 4

0 10 20 30 40 50 60 70 80 90 100
Number of cryptographers

(i) MCMAS is faster, or equally fast, forn <= 7, but slower forall n > 7;

(i) we can be faster than MCMAS by a factor of > 100 (e.g., when n = 32) when checking a1,

whilst when verifying a3 our speed-up is of several orders of magnitudes.

since | didn't pay, T
I will say the _,Dml kn
true side. 4/ one of them p
since | can’t see
the coin landed «
) know which one ¢

Since | paid,
| will say
the opposite
side.

2 S0k

So, where are we?

» © we “played” with some logics, .. We gave program-epistemic
specifications, expressing requirements that given epistemic
properties hold on all final states of the program

» © we have an efficient method of reducing the validity of program-
epistemic specifications to appropriate queries to SMT solvers

» ® space for improvements...

epistemic K, operator can appear only after program O¢ operator...,
we cannot have K, Kg ¢ .., meaning we cannot have more than one

s

agent “knowing” k48

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

Second Program-Epistemic Language

epistemic K, operator can appear only after program O operator...,

o

If we want the program operator and the epistemic operator to
commute, perhaps link the program language and the logic more?

Programs, e.g., assignments, leak information; perhaps, we can model this
program “leak” via logics: announcement logics [Plaza’89]

Peggy
- announces

“success on
path x;”

- announces
“success on
path x,”

- announces
“success on

Ali-Baba’s Cave Zero Knowledge

Peggy reliably appears

at the exit Victor names
path x5’

Peggy randomly takes either path A or B, Victor chooses an exit path

while Victor waits outside

£

Second Program-Epistemic Language

[FM’23]
» perhaps link the program language and the logic more?
» Announcement logics [Plaza ‘89] ...
Program Syntax P = a? (test/announcement)
xg = e (assignment)
newkg - P (declare k visible to G)
P; Q (sequential composition)
PMQ (nondeterministic choice)
Second Epistemic Logic Syntax L5
an=T7 (atomic predicate)
aAa (conjunction)
- (negation)
Kpo (knowledge modality)
oo (public announcement formula)

Vxg - « (universal quantification) o g
SURREY

Let’s re-think relational semantics (for the new £,....

Example

x € {0,1}, v is visible, and x a secret

Does the program P = v := x leaks the secret x?

wp(v:=x,K(x=0)VK(x=1))=K(x=0)V K(x =1)[v\x]

True

What if the program P = (v := xMv := —x)?

depends on the thread’s observability of program execution

=N
()
A

e

Relational Semantics for L,,....

So, it depends on a few things and it is not obvious

For public programs, ...
Rw(P M Q,s) = {s'[cag = 15" € Rw(P,s)}
U {s'[cag = r1|s" € Rw(Q,s)}
Rw(P; Q, s) = s/eRW(P,s){RR;V(P,W)(Q5/)}
Rw(xc :=e,s) = {slkg + s(xg),xc — s(e)|}

Ry (newkg - P,s) = Ry, (P, {slkg — d] | d € D})
Rw(B7?,s) if (W,s) |= B then {s} else @

(=)
A4

2 S0k

Second, More Expressive Program-Epistemic
Language

Program-Epistemic Logic Lpx

az=7|aNd |-a|Kyal|[d]a|Vxs - a| Opa

e [p(Kv(secret mod 2))

K'in front of program
o K(Opsecret mod2=0) «——

+ e (K (x V1dn))

W, s) = [Bla iff (W.s) = B implies (Wig, s) | «
(W,s) EOpa iff for all s € Rw (P, s), (Ryy (P,W),s') E «
(W, s) EVog - iff for all c € D, (Uyepis'[ze = d] | s € W}, slzg = d]) F a

=)

2 8

Program-based Semantics for Ly....
5

/,/g 2
Linking programs and formula “tighter” than in the first attempt
wp : L p X L K — L K

wp(P M Q, &) = wp(P, a) A wp(Q, o)

wp(P; Q, o) = wp(P, wp(Q, a))

wp(xg :=e,a) = Vkg - [kg = e](alxg\kg])

wp(newkg - P,) = Vkg - wp(P, @)

wp(B?, a) = [Bla

Relational semantics at states and this WP-based semantics at ~

formulae coincide

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

L, Model Checking as First-Order (Un)satisfiability

Main theorem
e [¢] a set of states satisfying FO formula ¢

e o€ Lpk

[¢] = « < FO formula ¢ A =7(¢, o) unsatisfiable

where 7: Lro X Lpk — LFo

(¢, m) = (¢, Ka) = Vn- (¢ = 7(¢,)
(¢,) = (a) (¢, [Bla) = 7(¢,8) = T(¢ A 7(0,5), a)
(¢a Q1 © 012) (¢a Oé]_) © T(¢7 O[2) T(¢, DPO[) = T(Csbv WP(P' (y))
(¢, %6 -) = Vxg - 7(¢,)
One “go” translation for the “full” logic, unlike before =

e

L, Model Checking as First-Order (Un)satisfiability

Main theorem

[FM2023]

e [¢] a set of states satisfying FO formula ¢

o o€ Lpk

[¢] E o < FO formula ¢ A =7(¢, o) unsatisfiable

27
28
29
30
31
32
Lo
34
35
36
37
38
39
40

tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau
tau

Mechanised the translation in Haskell

:: ModalFormula -> Formula a -> ModalFormula
phi CAtom p) -
phi (Neg alpha) -
phi (Conj as)
phi (Disj as)
phi (Imp alphal alpha2)

Neg (tau phi alpha)
Conj [tau phi a | a < as]
Disj [tau phi a | a <- as]
tau phi alphal - tau phi alpha2

phi (Equiv alphal alpha2) = Ctau phi (alphal - alpha2)) A Ctau phi (alpha2 ¥ alphal))
phi (K ag alpha) mkForAll (nonobs ag) (phi - tau phi alpha)
phi (Ann beta alpha) tau phi beta - tau (phi A (tau phi beta)) alpha
phi (Box p alpha) - tau phi (wp alpha p)
phi (ForAl1B n alpha) = ForAllB n (tau phi alpha)
phi (ExistsB n alpha) = ExistsB n (tau phi alpha)
phi (ForAllI n d alpha) = ForALlI n d (tau phi alpha)
phi (ExistsI n d alpha) = ExistsI n d (tau phi alpha)
e

L, Model Checking as First-Order (Un)satisfiability

I Experiments before (knowledge-
based information flow in
programs for voting, anonymous
communication, ...,), BUT more
expressive and a bit slower

@ ®
® Q

Formula (1 Formula (3 Formula (3 Formula ~

N Twpt+Z3 Tsp+23 Tuwp+CVCS Typ+23 Tsp+2Z3 Twp+Z3 Tsp+23 Twp+23 Tsp+Z3

10 0.05s 4.86s 00ls 001s 00ls 001ls 00ls 00ls N/A
50 3ls t.o. 041s 0.05s 0.06s 003s 002s 0.03s N/A
100 t.o. t.o. 359s 0.15s 0.16s 007s 0.06s 007s N/A
200 t.o. t.o. 4190s 127s 071s 030s 0.20s 0.30s N/A

...(“SP” stands for the previous method at IJCAI17) SO

So, why and ...are we done?

How come we do not depreciate so much in efficiency, even if we
allow K,K,¢ and operator K even in front of operator o.?

» public announcement - model update/shrinking @
How come we can allow the program operate and the K operator to

commute?

» Single assignment of variables ..I! @

&
5
e
o

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

Yet Another Program-Epistemic Logics .. [AAAI2023]

Similar to the ones you saw (perhaps a “mix” of the two), but
» no public announcements

» the programs are modelled with dynamic logics [Vardi2013]
» Assignments different via substitutions

Logic
a u= 7w|-alanal(Ka)[Z/el|[pla
p = x:=c¢el|d?

(W, s) = (K,)[Z/€) iff for all s' € W,
s~z s[Z — s(€)] implies

(W,8') =
(W, s) E [pla iff forall s' € Ry(s), (R,(W),s') E «

We get derived dynamic operators ..

il = [pl[p]
pUpTa == [plaVvi]a

&
5
e
o

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

Practical Experimentation

SAT SAT Model Checking
(AAAI 2023) (UCAI 2017) (MCMAS)

Formula | result time result time result time
n=5 n=10 n=>5 n =10 n=2>5 n =10
- unsat 0.07s 70s unsat 0.03s 0.1s unsat 0.17s 0.18s
“Qp unsat 0.03s 7s unsat 0.02s 0.1s unsat 0.10s 0.12s
-t © | unsat 0.15s 17s N/A - 0.1s unsat 0.20s 0.25s
Qg sat 0.04s 7s sat 0.01s 0.1s sat 0.10s 0.12s

Performances on Verifying the Dining-cryptographers Problem

More expressive than [JCAI 2017 --> we allow
K,K,¢ and operator K even in front of operator O,

Still faster than model checking

Yet Another Program-Epistemic Logics
improvements

CAI JAVAVA\
2017 2023

1

K possible before [progl]

only one agent

program
public

announcements

multiple assignments

efficiency

® no
® yes
® no

no

© yes

© yes

© no
NaN
no

© yes

® 2%

© yes

© no
© yes
yes

© no

© x (due
to SSA)

Motivation & Aim

Program-Epistemic Logics
Verification Methods of These Logics
Practical Experimentations

Conclusions

)

Take-Home Message

* Programming languages and logics to model threads
*with each “reasoning” on values/knowledge/facts

* Program and logic semantics that models “intelligent” threads
* Good for privacy/ information-flow/rich non-interference properties
* Model checking delegated to SMT-solvers via translations to FO

* Implemented in Haskell here: https://github.com/UoS-SCCS/program-
epistemic-logic-2-smt

* Applied in the papers | spoke of to 3BV, dinning cryptographers, logic
puzzles;

* WIP: applied to fault tolerance protocols, an emulation of Uber booking, ZK
proof (Ali-Baba), membership proofs =

 SURREY

https://github.com/UoS-SCCS/program-epistemic-logic-2-smt
https://github.com/UoS-SCCS/program-epistemic-logic-2-smt

Conclusions & Future Work

* We played with a. few program-expressing logics with
privacy/observability purposes

Future Work
* Beyond public action/perfect recall: private actions
and bounded recall

* Probabilistic programs, loops

(=)
A4

2 8

Thank you

... for listening....

i.boureanu@surrey.ac.uk

*Images are copyrighted as per their source; pls. do not distribute without
checking

&
5
e
o

mailto:i.boureanu@surrey.ac.uk

