
Formal protocol verification of ETSI 
GS QKD 014 v1.1.1
Thomas Prévost, Bruno Martin, Olivier Alibart

I3S, Université Nice Côte d’Azur



Agenda

● What is Quantum Key Distribution?
○ Problem
○ Introduction to quantum mechanics
○ QKD: BB84

● ETSI GS QKD 014 v1.1.1 standard proposal
○ QKD limitations
○ Standard description

● Formal verification
○ ProVerif
○ Verification results



What is Quantum 
Key Distribution
BB84 example



Quantum Key Distribution (QKD)

Problem: how to ensure reliable forward-secrecy against a “Harvest now, decrypt 
later” attacker?

Shor’s 
algorithm

few years…



Post-Quantum Cryptography?

Support already enabled in 
some applications (OpenSSH 
9+, Google Chrome…)



Inherent problem

Is it possible to ensure that traffic eavesdropped now cannot be decrypted later, if 
the encryption were broken?

We should change the whole paradigm



Short introduction to quantum mechanics: light 
polarization

Polarization refers to the orientation of the electric 
field in a light wave.



Short introduction to quantum mechanics: light 
polarization

Polarizer: device that selectively 
transmits light of a specific 
polarization and blocks light of 
other polarizations.

A linear polarizers transmit light 
in a single plane of polarization.



Short introduction to quantum mechanics: light 
polarization

What happens with 2 orthogonal 
polarizers?

Obviously light is blocked



Short introduction to quantum mechanics: light 
polarization

What if we insert a 45° 
polarizer in the middle?

???
The measurement modifies the 
polarization state of the photon, 
as photon polarization is a 
quantum state



Quantum encryption security: no-cloning theorem

Since the measurement modifies the quantum state, it is impossible to create an 
independent and identical copy of an arbitrary unknown quantum state.

Not the same qubit



How to detect that someone is eavesdropping the 
traffic (BB84)?

● Let’s keep the photon polarization as qubit state
● First we define 2 orthogonal basis:

○ + : 0 = ↑ 1 = →
○ X : 0 = ↗ 1 = ↘

● We need a quantum channel and an authenticated 
clear channel: we can use classical ciphers for 
encryption



How to detect that someone is eavesdropping the 
traffic (BB84)?

Alice’s random bit 0 1 1

Alice’s random sending basis + + X

Sent polarization ↑ → ↘

Bob’s random measuring basis + X X

Measured polarization ↑ ↗ ↘

Basis reconciliation on public authenticated channel

Shared bits 0 ? 1



How to detect that someone is eavesdropping the 
traffic (BB84)?

As Eve doesn’t know the basis, she will change 50% of qubits

+ basis ↑ X basis ?
I don’t know ↗ + basis

50 % ↑
50 % →

So Alice and Bob would be able to detect Eve on-the-fly 
by checking some random bit samples, and accordingly 
abort the key exchange



ETSI GS QKD 014 
v1.1.1 standard 
proposal



QKD limitations

● Need a single direct fiber between the 2 sites

● Distance limitations due to fiber losses (~200 km today)

➢ More suited for cross-data-centers communication



ETSI standard representation

Entities

● KME: Key Management Entity: at least 1 / secure zone
● SAE: Secure Application Entity

Zones

● Secure zone: inside datacenter, classical encryption is allowed
● Outside (eg Internet): We must assume that communications are 

eavesdropped



ETSI standard representation



What does the standard say?

● SAEs are authenticated to KMEs via client SSL certificates
● Defines some REST routes for SAEs requests to KMEs:

○ POST /api/v1/keys/{slave SAE id}/enc_keys
○ GET /api/v1/keys/{slave SAE id}/status
○ POST /api/v1/keys/{master SAE id}/dec_keys

● And the rest is “outside the scope” (like how keys are actually 
exchanged between KMEs…)



Formal verification
ProVerif



ProVerif

● Takes abstract representation of a protocol and its cryptographic 
primitives (in the form of equations)

● Assumes Dolev-Yao model
● Translates protocol into Horn clauses
● Tries to find constraint contradiction to infer an attack

● Proven complete (cannot be a false negative)
● Pretty fast



ProVerif

type key.

fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key; sdec(senc(m, k), k) = m.

process

new my_key:key;

event start(my_key);

let encrypted_secret = senc(the_secret, my_key) in

out(public_channel_1, encrypted_secret);

in(private_channel_1, another_secret:bitstring);

event stop(my_key);

query attacker(the_secret).

query k:key; event(stop(k)) ==> event(start(k)).



Verification results

Standard appeared to be secured for both secrecy and authentication

At these conditions:

● All messages exchanged between KMEs are authenticated
● Slave (2nd) SAE must send a cryptographic challenge to master (1st) SAE to 

ensure proper authentication

Find the whole ProVerif code at 
https://gist.github.com/thomasarmel/c2bfc851bb3b19348bf1df90ed041fac

https://gist.github.com/thomasarmel/c2bfc851bb3b19348bf1df90ed041fac


Detailed protocol conception

Actual implementations:
https://github.com/thomasarmel/qkd_kme_server
https://github.com/thomasarmel/rustls/tree/qkd

https://github.com/thomasarmel/qkd_kme_server
https://github.com/thomasarmel/rustls/tree/qkd


Thanks!

Questions?


