
Formalizing Hardware Security Mechanisms, Using SMT Solvers
Work in progress

Pierre Wilke, Matthieu Baty, Guillaume Hiet, Alix Trieu

SUSHI, CentraleSupélec Rennes, Inria, ANSSI

April 3rd, 2024

Formalizing Hardware Security Mechanisms, Using SMT Solvers April 3rd, 2024 1 / 17

Overview

Goal: implement and prove hardware security mechanisms, at the micro-architectural level.

Earlier work1:

• extend an existing RISC-V processor written in the Kôika Hardware Description Language with
a shadow stack

• propose a framework for proving properties about Kôika designs
• long and fragile Coq proofs of shadow stack correctness

This talk:

• Let’s use a SMT solver to do the long and boring proof for us.

1Matthieu Baty et al. “A Generic Framework to Develop and Verify Security Mechanisms at the Microarchitectural
Level: Application to Control-Flow Integrity”. In: CSF 2023. IEEE, 2023, pp. 372–387.

Formalizing Hardware Security Mechanisms, Using SMT Solvers April 3rd, 2024 2 / 17

Outline

1 Our previous work: proofs on Kôika designs

2 Proofs using a SMT solver

Formalizing Hardware Security Mechanisms, Using SMT Solvers April 3rd, 2024 3 / 17

Outline

1 Our previous work: proofs on Kôika designs

2 Proofs using a SMT solver

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 4 / 17

Kôika2

A Hardware Description Language embedded in Coq.

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler

Rules describe how the registers are updated at each cycle.

Conflicts occur e.g. when the same register is updated by two different rules.
 Complex semantics

2The Essence of BlueSpec, PLDI’20, Thomas Bourgeat et al., https://github.com/mit-plv/koika
Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 4 / 17

https://github.com/mit-plv/koika

A RISC-V processor in Kôika

Kôika developers provide an example model of a RISC-V processor

• 4-stage processor (Fetch, Decode, Execute, Writeback)
• RV32I
• unprivileged specification, no interrupts
• under 1000 lines of Kôika code
• runs on an actual FPGA board (TinyFPGA, LambdaConcept ECPIX-5)

We implemented and proved a hardware shadow stack.

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 5 / 17

Shadow stacks

• Protection against buffer overflows that overwrite the return address
• Enforces (part of) control-flow integrity (only backward edges)

• i.e., when we execute a ret instruction, we always jump back to (just after) our call site

Principle:

• when a call instruction is encountered, push
next(pc) on the shadow stack

• when a ret instruction is encountered, pop
addr_ss from the shadow stack and pop addr
from the normal stack

• If addr_ss == addr, continue
• Else, we detect a violation

f1 parameters
f1 @ret
f1 locals

f2 parameters
f2 @ret
f2 locals

f1 @ret
f2 @ret

Stack Shadow Stack

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 6 / 17

Shadow stack

Implementation:

• new memory region for our shadow stack
• instrument the Execute stage to push onto and pop from the shadow stack when needed
• when a violation is detected, we halt the processor

What we want to prove
• Return to a modified return address⇒ halt processor

• A bit more precisely :
If the instruction about to be executed in the pipeline is a ret3,
and the address stored at the top of the shadow stack is different from the address to which we
are about to jump,
then the processor should be put in a halting state.

• Underflow or overflow of the shadow stack⇒ halt processor
• Otherwise, behaviour preserved

3In RISC-V, ret is actually jr ra, i.e. jump to address contained in register ra.
Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 7 / 17

Proving properties on Kôika models

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler

Security properties

Coq proof?

Not so easy... Most tactics take dozens of
minutes, or do not terminate, or consume too
much memory.

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 8 / 17

Proving properties on Kôika models

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler

Security properties

Coq proof?

Not so easy... Most tactics take dozens of
minutes, or do not terminate, or consume too
much memory.

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 8 / 17

Proving properties on Kôika models

Kôika model
high-level, atomic

rules

Verilog model
low-level, everything

parallel

verified compiler

Security properties

Coq proof?

Not so easy... Most tactics take dozens of
minutes, or do not terminate, or consume too
much memory.

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 8 / 17

Proofs on Kôika models using Low-Level Representations

Our solution: we compile high-level Kôika models into lower-level representations (LLR), more
amenable to proofs.

Kôika model
Lower-level

representation
Security

properties
Coq proof?verified

transformation

e ::= v | cst | reg(r) | .e | e1 ./ e2 | if e1 then e2 else e3

llr ::= {vars : V → e ; final_values : Reg→ V}

The LLR is a map Reg→ Expr, which gives the value of each register at the end of a cycle,
depending on the values of registers at the beginning of the cycle.
In particular, the conflict detection logic is embedded into these expressions.

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 9 / 17

Lower-level representation (LLR)

Computing a LLR is quick; but produces a large number of quite deep expressions.

We developed a range of program transformations akin to compiler optimizations on LLRs :

• constant folding (3 + 4 7)
• replace variable v with constant c (with a manual proof obligation that JvK c)
• replace sub-expression e with e′ (with a manual proof obligation that e ≡ e′)
• replace register r with its value at the beginning of the cycle (with a manual proof obligation)
• exploit partial information about register values (e.g. bits 6:0 of register inst are 0001101)

(with a manual proof obligation)

It’s up to the (human) prover to apply each program transformation manually and prove the
obligations.

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 10 / 17

Correctness proofs of the shadow stack

Proof No. lines of proof Time Qed.
Underflow⇒ halt 150 1m10s

Overflow⇒ halt 270 2m30s
Wrong address⇒ halt 900 3m10s

Lots of lines of boring proofs, very fragile (numbering of variables).

Our proofs are mainly case studies about bitvectors. What if we discharged our proofs to SMT
solvers?

Formalizing Hardware Security Mechanisms, Using SMT Solvers Our previous work: proofs on Kôika designs April 3rd, 2024 11 / 17

Outline

1 Our previous work: proofs on Kôika designs

2 Proofs using a SMT solver

Formalizing Hardware Security Mechanisms, Using SMT Solvers Proofs using a SMT solver April 3rd, 2024 12 / 17

Example proof: shadow stack overflow implies halt

Definition sstack_full ctx : Prop :=
ctx (ShadowStack.size) = ShadowStack.capacity.

Definition sstack_push ctx : Prop :=
forall s b,
ctx (d2e.data) = Struct s ->
get_field_struct s "inst" = Some (Bits b) ->
is_call_instruction b = true.

Lemma overflow_halt: forall ctx,
sstack_full ctx -> sstack_push ctx ->
(cycle ctx) halt = Bits [true].

Formalizing Hardware Security Mechanisms, Using SMT Solvers Proofs using a SMT solver April 3rd, 2024 12 / 17

Example proof: shadow stack overflow implies halt

Lemma overflow_halt: forall ctx,
sstack_full ctx -> sstack_push ctx ->
(cycle ctx) halt = Bits [true].

Instead of reasoning about the Kôika semantics of a clock cycle, we compute the LLR
corresponding to the circuit. Our goal becomes:

Lemma overflow_halt: forall ctx,
sstack_full ctx -> sstack_push ctx ->
llr.final_values halt = v_halt ->
Jv_haltKctx

llr = Bits [true].

We then encode the hypotheses about the current context (sstack_full, sstack_push) as
LLR expressions.

We just need to convert LLR expressions into SMTLIB expressions about bitvectors!

Formalizing Hardware Security Mechanisms, Using SMT Solvers Proofs using a SMT solver April 3rd, 2024 13 / 17

SMT encoding

; all variables in LLR
(assert (= v_1 (encode_expr e_1)))
...
(assert (= v_n (encode_expr e_n)))

; hypotheses
; sstack_full
(assert (= reg_shadow_stack_size capacity))
; about to push
(assert ...)
; assert negation of goal
(assert (not (= #b1 final_reg_halt)))
(check-sat) ; expect unsat
(get-model)

Formalizing Hardware Security Mechanisms, Using SMT Solvers Proofs using a SMT solver April 3rd, 2024 14 / 17

Proofs

LLR
Hypotheses

Goal

LLR
Hypotheses

Goal

expr_to_smt.ml SMTLIB file

Extraction UNSAT SAT

Proof No. lines of proof Time Qed. Time z3 (s)
Underflow⇒ halt 150 1m10s 0.08

Overflow⇒ halt 270 2m30s 0.07
Wrong address⇒ halt 900 3m10s 6.14

No problem 1.70
Addition correct 0.07

Formalizing Hardware Security Mechanisms, Using SMT Solvers Proofs using a SMT solver April 3rd, 2024 15 / 17

Better integration, with SMTCoq ?

OK but we’re leaving the Coq world... Can we keep all the formal guarantees of Coq and the
automation provided by SMT solvers?

SMTCoq4 sounds like a possible solution

• transforms current goal into a SMT formula
• if unsat: solver generates an unsat core, translated back into a Coq proof
• if sat: solver generates an (counter-)example model, given back to user

This is still work-in-progress...

4https://github.com/smtcoq/smtcoq
Formalizing Hardware Security Mechanisms, Using SMT Solvers Proofs using a SMT solver April 3rd, 2024 16 / 17

https://github.com/smtcoq/smtcoq

Conclusion

We automated the proof methodology for Kôika designs using SMT solvers

• makes proof maintenance much easier
• enables exploration of larger, more complex designs (WIP privilege levels, interrupts...)
• TODO: integration with SMTCoq
• TODO: functional correctness wrt. an ISA specification

Hiring PhDs and post-docs in CentraleSupélec, Rennes!
SUSHI Inria team - SecUrity at the Software Hardware Interface

Topics: formal models of processors, binary analysis,

Contact:

! pierre.wilke@centralesupelec.fr

! guillaume.hiet@centralesupelec.fr

Formalizing Hardware Security Mechanisms, Using SMT Solvers Proofs using a SMT solver April 3rd, 2024 17 / 17

pierre.wilke@centralesupelec.fr
guillaume.hiet@centralesupelec.fr

	Our previous work: proofs on Kôika designs
	Proofs using a SMT solver

